Last modified: 2018-05-23
Abstract
References
1. Atkinson, A.C., Riani, M., Cerioli, A.: Cluster detection and clustering with random startforward searches. Journal of Applied Statistics pp. 1–22 (2017)
2. Cerioli, A., Riani, M., Atkinson, A.C., Corbellini, A.: The power of monitoring: how to makethe most of a contaminated multivariate sample. Statistical Methods & Applications pp. 1–29(2018)
3. Dotto, F., Farcomeni, A., Garcıa-Escudero, L.A., Mayo-Iscar, A.: A fuzzy approach to robustregression clustering. Advances in Data Analysis and Classification 11(4), 691–710 (2017)
4. Dotto, F., Farcomeni, A., Garcia-Escudero, L.A., Mayo-Iscar, A.: A reweighting approach torobust clustering. Statistics and Computing 28(2), 477–493 (2018)
5. Farcomeni, A.: Robust constrained clustering in presence of entry-wise outliers. Technometrics56, 102–111 (2014)
6. Farcomeni, A., Dotto, F.: The power of (extended) monitoring in robust clustering. StatisticalMethods & Applications pp. 1–10
7.Farcomeni, A., Greco, L.: Robust methods for data reduction. CRC press (2016)
8. Flury, B., Riedwyl, H.: Multivariate Statistics. A Practical Approach. Chapman and Hall,London (1988)
9. Fritz, H., Garc´ıa-Escudero, L., Mayo-Iscar, A.: tclust: An R package for a trimming approachto cluster analysis. J Stat Softw 47 (2012). URL http://www.jstatsoft.org/v47/i12
10. Garcıa-Escudero, L., Gordaliza, A., Matr´an, C., Mayo-Iscar, A.: A general trimming approachto robust cluster analysis. Ann Stat 36, 1324–1345 (2008)
11. Garc´ıa-Escudero, L., Gordaliza, A., Matr´an, C., Mayo-Iscar, A.: Avoiding spurious local maximizersin mixture modeling. Stat Comput 25, 619–633 (2015)
12. Hennig, C., Liao, T.F.: How to find an appropriate clustering for mixed-type variables withapplication to socio-economic stratification. Journal of the Royal Statistical Society: Series C(Applied Statistics) 62(3), 309–369 (2013)