Last modified: 2018-05-18
Abstract
References
1. Ahn, Soohan, Joseph HT Kim, and Vaidyanathan Ramaswami. â€A new class of models forheavy tailed distributions in finance and insurance risk.†Insurance: Mathematics and Eco-nomics 51.1 (2012): 43-52.
2.Aitkin, Murray, and Granville Tunnicliffe Wilson. â€Mixture models, outliers, and the EMalgorithm.†Technometrics 22.3 (1980): 325-331.
3. Bagnato, Luca, and Antonio Punzo. â€Finite mixtures of unimodal beta and gamma densitiesand the k -bumps algorithm.†Computational Statistics 28.4 (2013): 1571-1597.
4. Bakar, SA Abu, et al. â€Modeling loss data using composite models.†Insurance: Mathematicsand Economics 61 (2015): 146-154.
5. Berkane, Maia, and Peter M. Bentler. â€Estimation of contamination parameters and identifi-cation of outliers in multivariate data.†Sociological Methods & Research 17.1 (1988): 55-64.
6. Bickerstaff, David R. â€Automobile Collision Deductibles and Repair Cost Groups: The Log-normal Model.†PCAS LIX (1972): 68.
7. Burnecki, Krzysztof, Adam Misiorek, and Rafal Weron. â€Loss distributions.†Statistical Toolsfor Finance and Insurance. Springer, Berlin, Heidelberg, 2005. 289-317.
8. Chen, Song Xi. â€Probability density function estimation using gamma kernels.†Annals of theInstitute of Statistical Mathematics 52.3 (2000): 471-480.
9. Cooray, Kahadawala, and Malwane MA Ananda. â€Modeling actuarial data with a compositelognormal-Pareto model.†Scandinavian Actuarial Journal 2005.5 (2005): 321-334.
10. Eling, Martin. â€Fitting insurance claims to skewed distributions: Are the skew-normal andskew-student good models?.†Insurance: Mathematics and Economics 51.2 (2012): 239-248.
11. Jeon, Yongho, and Joseph HT Kim. â€A gamma kernel density estimation for insurance lossdata.†Insurance: Mathematics and Economics 53.3 (2013): 569-579.
12. Kazemi, Ramin, and Monireh Noorizadeh. â€A Comparison between Skew-logistic and Skew-normal Distributions.†Matematika 31.1 (2015): 15-24.
13. Punzo, Antonio, and Paul D. McNicholas. â€Parsimonious mixtures of multivariate contami-nated normal distributions.†Biometrical Journal 58.6 (2016): 1506-1537