Last modified: 2018-05-10
Abstract
References
1. De Smedt, T., Simons, K., Van Nieuwenhuyse, A., Molenberghs, G. (2015). ComparingMCMCand INLA for disease mapping with Bayesian hierarchical models. Archives of PublicHealth, 73(1), O2.
2. Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M., Watjou, K. (2015). ComparingINLA and OpenBUGS for hierarchical Poisson modeling in disease mapping. Spatial andspatio-temporal epidemiology, 14, 45-54.
3. Rue, H., Martino, S., Chopin, N. (2009). Approximate Bayesian inference for latent Gaussianmodels by using integrated nested Laplace approximations. Journal of the royal statisticalsociety: Series b (statistical methodology), 71(2), 319-392.
4. Besag, J., York, J., Mollie, A. Bayesian image restoration with two applications in spatialstatistics (with discussion) Ann Inst Stat Math. 1991; 43: 1–59. doi: 10.1007. BF00116466
5. Lindgren, F., Rue, H. (2015). Bayesian spatial modelling with R-INLA. Journal of StatisticalSoftware, 63(19).
6. Blangiardo, M., Cameletti, M., Baio, G., Rue, H. (2013). Spatial and spatio-temporal modelswith R-INLA. Spatial and spatio-temporal epidemiology, 4, 33-49.
7. Bilancia, M., Demarinis, G. (2014). Bayesian scanning of spatial disease rates with integratednested Laplace approximation (INLA). Statistical Methods & Applications, 23(1), 71-94.