Open Conference Systems, 50th Scientific meeting of the Italian Statistical Society

Font Size: 
Spatial heterogeneity in principal component analysis: a study of deprivation index on Italian provinces
Paolo Postiglione, M. Simona Andreano, Roberto Benedetti, Alfredo Cartone

Last modified: 2018-05-25

Abstract


Principal Component Analysis (PCA) is a tool often used for the construction of composite indicators even at the local level ([18]). In general, when we are dealing with spatial data, the method of PCA, in its classical version, is not appropriate for the synthesis of simple indicators. The objective of this paper is to introduce a method to take into account the spatial heterogeneity in PCA, extending the contribution introduced by [19]. The proposed method will be implemented for the definition of a deprivation index on Italian provinces.


References


  1. Anselin, L.:  Spatial econometrics: Methods and models. Kluwer Academic Publishers, Dordrecht (1988).
  2. Decanq, K., Lugo, M.A.: Weights in multidimensional indices of wellbeing: An overview. Econom. Rev. 32: 7-34 (2013).
  3. Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A.S., McLoone, S.: Principal component analysis on spatial data: An overview. Ann. Assoc. Am. Geogr. 103: 106-128 (2013).
  4. De Muro, P., Mazziotta, M., Pareto, A.: Composite indices of development and poverty: An application to MDGs. Soc. Indic. Res. 104: 1-18 (2011).
  5. Fotheringham, A.S., Brunsdon, C., Charlton, M.: Geographically weighted regression - The analysis of spatially varying relationships. Chichester, UK: Wiley (2002).
  6. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741 (1984).
  7. Geman, D., Geman, S., Graffigne, C., Dong, P.: Boundary detection by constrained optimization. IEEE Trans. Pattern Anal. Mach. Intell. 12, 609–628 (1990).
  8. Goodchild, M.F.: Geographical data modeling. Comput. Geosci. 18: 401–408 (1992).
  9. Harris P., Brunsdon C., Charlton. M. (2011). Geographically weighted principal components analysis. Int. J. Geogr. Inf. Sci. 25: 1717–36.
  10. Harris, P., Clarke, A., Juggins, S., Brunsdon, C., Charlton M.: Enhancements to a geographically weighted principal component analysis in the context of an application to an environmental data set. Geogr. Anal. 47: 146-172 (2015).
  11. Havard, S., Deguen, S., Bodin, J., Louis, K., Laurent, O., Bard, D.: A small-area index of socioeconomic deprivation to capture health inequalities in France. Soc. Sci. Med. 67: 2007-2016 (2008).
  12. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educ. Psychol. 24: 417-441 (1933).
  13. Jolliffe, I.T.: Principal component analysis. Springer (2002).
  14. Kirkpatrik, S., Gelatt, Jr C.D., Vecchi, M.P.: Optimization by simulated annealing. Sci. 220: 671-680 (1983).
  15. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
  16. OECD: OECD Core set of indicators for environmental performance reviews. Environ. Monogr. 83 (1993).
  17. Pampalon, R., Raymond, G.: A deprivation index for health and welfare planning in Quebec. Chronic Dis. Can. 21:104-13 (2000).
  18. Pampalon, R., Hamel, D., Gamache, P.: Health inequalities, deprivation, immigration and aboriginality in Canada: A geographic perspective. Can. J. Public Health 101:470-4 (2010).
  19. Postiglione, P., Andreano, M.S., Benedetti, R.: Using constrained optimization for the identification of convergence clubs. Comput. Econ. 42: 151-174. (2013).
  20. Postiglione, P., Andreano, M.S., Benedetti, R.: Spatial clusters in EU productivity growth. Growth Chang. 48: 40-60 (2017).
  21. Townsend, P.: Deprivation. J. So. Policy 16: 125-146 (1987).

Full Text: PDF