Last modified: 2018-05-18
Abstract
References
1. J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning for finance: deep portfolios,†Applied Stochastic Models in Business and Industry, 2016. asmb.2209.
2. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,†The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.
3. Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,†Nature, vol. 521, pp. 436–444, 5 2015.
4. ANAS, “ANAS, Grande Raccordo Anulare di Roma,†2017. [Online; accessed 28-nov-2017].
5. N. Polson and V. Sokolov, “Deep Learning Predictors for Traffic Flows,†ArXiv e-prints, Apr. 2016.
6. G. J. G.E.P. Box, Time Series Analysis, Forecasting and Control. San Francisco, CA: Holden-Day, revised edition ed., 1970.
7. G. P. Zhang, “Time series forecasting using a hybrid arima and neural network model.,†Neurocomputing, vol. 50, pp. 159–175, 2003.
8. I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning.†Book in preparation for MIT Press, 2016.
9. L. A. Cauchy, “Methode generale pour la resolution des systemes d’equations simultanees,†Compte Rendu a l’Academie des Sciences, vol. 25, pp. 536–538,, 1847.
10. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by backpropagating errors,†in Neurocomputing: Foundations of Research (J. A. Anderson and E. Rosenfeld, eds.), pp. 696–699, Cambridge, MA, USA: MIT Press, 1988.
11. A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimensional recurrent neural networks,†in Advances in Neural Information Processing Systems 21 (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 545–552, Curran Associates, Inc., 2009.
12. F. Gers, “Long short-term memory in recurrent neural networks,†2001.