Open Conference Systems, 50th Scientific meeting of the Italian Statistical Society

Font Size: 
Bootstrap ClustGeo with spatial constraints
veronica Distefano, Valentina Mameli, Fabio Della Marra

Last modified: 2018-05-18

Abstract


The aim of this paper is to introduce a new statistical procedure for clustering spatial data when an high number of covariates is considered. In particular, this procedure is obtained by coupling the agglomerative hierarchical clustering method that ha been recently proposed for spatial data, referred as ClustGeo (CG) method , with the bootstrap technique. The proposed procedure, which we call BootstrapClustGeo (BCG), is developed and tested on a real dataset. The results that we achieve show that BCG outperforms CG in terms of accuracy of some cluster evaluation measures.

References


1. Amiri, S., Clarke, B.S., Clarke, J.L.: Clustering categorical data via ensembling dissimilaritymatrices. J. Comput. Graph. Statist. 1–14 (2017).

2. Becue-Bertaut,M., Alvarez-Esteban, R., Sanchez-Espigares, J.A., Xplortext: Statistical Analysisof Textual Data R package. https://cran.r-project.org/package=Xplortext. R-package version1.0 (2017).

3. Benassi, F., Bocci, C. and Petrucci, A.. Spatial data mining for clustering: an application tothe FlorentineMetropolitan Area using RedCap. Classification and DataMining, pp. 157-164.Springer, Berlin, Heidelberg (2013)

4. Bourgault, G., Marcotte, D., Legendre, P.: The Multivariate (co) Variogram as a SpatialWeighting Function in Classification Methods. Mathematical Geology 24(5): 463–478(1992).

5. Carvalho, A. X. Y., Albuquerque, P. H. M., de Almeida Junior, G. R., Guimaraes, R. D.:Spatial hierarchical clustering. Revista Brasileira de Biometria, 27(3), 411–442 (2009).

6. Chavent, M., Kuentz-Simonet, V., Labenne, A., Saracco, J.: ClustGeo: an R package for hierarchicalclustering with spatial constraints. Computational Statistics, 1-24 (2018).

7. Brock, G., Pihur, V., Datta, S., Datta, S.: clValid: An R Package for Cluster Validation. Journalof Statistical Software 25: 1–22 (2008)

8. Everitt, B., Landau, S., Leese, M., Stahl, D.:Cluster analysis. 5th edn, Wiley, Chichester(2011).

9. Lance, G.N., Williams, W.T.: A General Theory of Classicatory Sorting Strategies 1. HierarchicalSystems. The Computer Journal 9: 373–380 (1967).

10. Murtagh, F.: Multidimensional clustering algorithms. Compstat Lectures, Vienna: Physika,Verlag (1985).

11. UN-GGIM. 2012. Monitoring Sustainable Development: Contribution of Geospatial Informationto the Rio Processes. New York: United Nations. Accessed January 17, (2016).


Full Text: PDF