Last modified: 2018-05-18
Abstract
References
1. Amiri, S., Clarke, B.S., Clarke, J.L.: Clustering categorical data via ensembling dissimilaritymatrices. J. Comput. Graph. Statist. 1–14 (2017).
2. Becue-Bertaut,M., Alvarez-Esteban, R., Sanchez-Espigares, J.A., Xplortext: Statistical Analysisof Textual Data R package. https://cran.r-project.org/package=Xplortext. R-package version1.0 (2017).
3. Benassi, F., Bocci, C. and Petrucci, A.. Spatial data mining for clustering: an application tothe FlorentineMetropolitan Area using RedCap. Classification and DataMining, pp. 157-164.Springer, Berlin, Heidelberg (2013)
4. Bourgault, G., Marcotte, D., Legendre, P.: The Multivariate (co) Variogram as a SpatialWeighting Function in Classification Methods. Mathematical Geology 24(5): 463–478(1992).
5. Carvalho, A. X. Y., Albuquerque, P. H. M., de Almeida Junior, G. R., Guimaraes, R. D.:Spatial hierarchical clustering. Revista Brasileira de Biometria, 27(3), 411–442 (2009).
6. Chavent, M., Kuentz-Simonet, V., Labenne, A., Saracco, J.: ClustGeo: an R package for hierarchicalclustering with spatial constraints. Computational Statistics, 1-24 (2018).
7. Brock, G., Pihur, V., Datta, S., Datta, S.: clValid: An R Package for Cluster Validation. Journalof Statistical Software 25: 1–22 (2008)
8. Everitt, B., Landau, S., Leese, M., Stahl, D.:Cluster analysis. 5th edn, Wiley, Chichester(2011).
9. Lance, G.N., Williams, W.T.: A General Theory of Classicatory Sorting Strategies 1. HierarchicalSystems. The Computer Journal 9: 373–380 (1967).
10. Murtagh, F.: Multidimensional clustering algorithms. Compstat Lectures, Vienna: Physika,Verlag (1985).
11. UN-GGIM. 2012. Monitoring Sustainable Development: Contribution of Geospatial Informationto the Rio Processes. New York: United Nations. Accessed January 17, (2016).