Open Conference Systems, 50th Scientific meeting of the Italian Statistical Society

Font Size: 
An INDCLUS-type model for occasion-specific complementary partitions
Laura Bocci, Donatella Vicari

Last modified: 2018-05-18

Abstract


This paper presents an INDCLUS-type model for partitioning the units in three-way proximity data taking into account the systematic differences among the occasions. Specifically, the proximity structure of each occasion is assumed to underlie two complementary partitions: the first, common to all occasions, defines a partitioning of a subset of units and the second, occasion-specific, defines a partitioning of the remaining units. The model is fitted in a least-squares framework and an efficient ALS algorithm is given

References


  1. Basford, K.E., McLachlan, G.J.: The Mixture Method of Clustering Applied to Three-way Data. J. Classif. 2, 109--125 (1985).
  2. Bocci, L., Vicari, D., Vichi, M.: A mixture model for the classification of three-way proximity data. Comput. Stat. Data An. 50, 1625--1654 (2006).
  3. Bocci, L., Vicari, D: GINDCLUS: Generalized INDCLUS with external information. Psychometrika 82, 355--381 (2017).
  4. Carroll, J.D., Arabie, P.: INDCLUS: an Individual Differences Generalization of ADCLUS model and the MAPCLUS algorithm. Psychometrika 48, 157--169 (1983).
  5. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-generalization of the Eckart-Young decomposition. Psychometrika 35, 283--319 (1970).
  6. Chaturvedi, A., Carroll, J.D.: CLUSCALE (CLUstering and multidimensional SCAL[E]ing): a three-way hybrid model incorporating clustering and multidimensional scaling structure. J. Classif. 23, 269--299 (2006).
  7. Giordani, P., Kiers, H.A.L.: FINDCLUS: Fuzzy INdividual Differences CLUStering. J. Classif. 29, 170--198 (2012).
  8. Gordon, A.D., Vichi, M.: Partitions of Partitions. J. Classif. 15, 265--285 (1998).
  9. Hunt, L.A., Basford, K.E.: Fitting a Mixture Model to Three-mode Three-way Data with Categorical and Continuous Variables. J. Classif. 16, 283--296 (1999).
  10. Lawson, C.L., Hanson, R.J.: Solving least squares problems. Prentice-Hall, Englewood Cliffs, NJ (1974).
  11. Vichi, M.: One Mode Classification of a Three-way Data Set. J. Classif. 16, 27--44 (1999).
  12. Vicari, D., Vichi, M.: Structural Classification Analysis of Three-Way Dissimilarity Data. J. Classif. 26, 121--154 (2009).

Full Text: DOC