Last modified: 2018-05-17
Abstract
References
1. Embrechts, P., C. Klueuppelberg, T. Mikosch (1997). Modelling Extremal Events. Springer.
2. Gomes, M. I., & Guillou, A. (2015). Extreme value theory and statistics of univariate extremes:a review. International Statistical Review, 83(2), 263–292.
3. Gomes, M. I., Brilhante, M. F., & Pestana, D. (2016). New reduced-bias estimators of a positiveextreme value index. Communications in Statistics-Simulation and Computation, 45(3),833–862.
4. Grahovac, D., Jia, M., Leonenko, N. N., Taufer, E. (2015) Asymptotic properties of the partitionfunction and applications in tail index inference of heavy-tailed data. Statistics: A Journalof Theoretical and Applied Statistics 49, 1221–1242.
5. Hill, B. M. (1975) A simple general approach to inference about the tail of a distribution. TheAnnuals of Statistics 3(5), 1163–1174.
6. Johnson N. L., S. Kotz, N. Balakrishnan (1995) Continuous Univariate Distributions, Vol. 2,2nd ed, Wiley.
7. Jia, M., Taufer, E., Dickson, M. (2018). Semi-parametric regression estimation of the tailindex. Electronic Journal of Statistics 12, 224–248.
8. Kratz, M. F., Resnick, S. I. (1996) The QQ-estimator and heavy tails. Comm. Statist. StochasticModels 12 (4), 699–724.
9. McNeil, A. J., R. Frey, P. Embrechts (2005) Quantitative Risk Management, Princeton UniversityPress.
10. Resnik, S. I. (1999) A probability path, Birkhauser.
11. Zenga, M. (1984). Proposta per un indice di concentrazione basato sui rapporti fra quantilidi popolazione e quantili di reddito. Giornale degli Economisti e Annali di Economia 5/6, 301–326