Open Conference Systems, 50th Scientific meeting of the Italian Statistical Society

Font Size: 
Tail analysis of a distribution by means of an inequality curve
Emanuele Taufer, Flavio Santi, Giuseppe Espa, Maria Michela Dickson

Last modified: 2018-05-17

Abstract


The Zenga (1984) inequality curve λ(p) is constant in p for Type I Pareto distributions. We show that this property holds exactly only for the Pareto distribution and, asymptotically, for distributions with power tail with index –α, with  α >1. Exploiting these properties one can develop powerful tools to analyze and estimate the tail of a distribution. An estimator for α is discussed. Inference is based on an estimator of λ(p) which utilizes all sample information for all values of p. The properties of the proposed estimation strategy is analyzed theoretically and by means of simulations.

References


1. Embrechts, P., C. Klueuppelberg, T. Mikosch (1997). Modelling Extremal Events. Springer.

2. Gomes, M. I., & Guillou, A. (2015). Extreme value theory and statistics of univariate extremes:a review. International Statistical Review, 83(2), 263–292.

3. Gomes, M. I., Brilhante, M. F., & Pestana, D. (2016). New reduced-bias estimators of a positiveextreme value index. Communications in Statistics-Simulation and Computation, 45(3),833–862.

4. Grahovac, D., Jia, M., Leonenko, N. N., Taufer, E. (2015) Asymptotic properties of the partitionfunction and applications in tail index inference of heavy-tailed data. Statistics: A Journalof Theoretical and Applied Statistics 49, 1221–1242.

5. Hill, B. M. (1975) A simple general approach to inference about the tail of a distribution. TheAnnuals of Statistics 3(5), 1163–1174.

6. Johnson N. L., S. Kotz, N. Balakrishnan (1995) Continuous Univariate Distributions, Vol. 2,2nd ed, Wiley.

7. Jia, M., Taufer, E., Dickson, M. (2018). Semi-parametric regression estimation of the tailindex. Electronic Journal of Statistics 12, 224–248.

8. Kratz, M. F., Resnick, S. I. (1996) The QQ-estimator and heavy tails. Comm. Statist. StochasticModels 12 (4), 699–724.

9. McNeil, A. J., R. Frey, P. Embrechts (2005) Quantitative Risk Management, Princeton UniversityPress.

10. Resnik, S. I. (1999) A probability path, Birkhauser.

11. Zenga, M. (1984). Proposta per un indice di concentrazione basato sui rapporti fra quantilidi popolazione e quantili di reddito. Giornale degli Economisti e Annali di Economia 5/6, 301–326


Full Text: PDF