Last modified: 2018-05-18
Abstract
References
1. Betti G., Gagliardi F., Verma V. (2018), Simplified Jackknife Variance Estimates for Fuzzy Measures of Multidimensional Poverty, International Statistical Review, doi:10.1111/insr.12219.
2. Cressie N. (1993), Statistics for Spatial Data, New York: Wiley.
3. European Commission (2010), Communication from the Commission. Europe 2020. A strategy for smart, sustainable and inclusive growth. Brussels, 3.3.2010 COM(2010) 2020.
4. Fay R.E., Herriot R.A. (1979), Estimates of income for small places: an application of James-Stein procedures to census data, Journal of the American Statistical Association, 74, pp. 269-277.
5. Foster J.E., Greer J., Thorbecke E. (1984), A class of decomposable poverty measures, Econometrica, 52, pp. 716-766.
6. Instituto Nacional De Estadistica (INE), (2012) Intermediate Quality Report, Survey on Income and Living Conditions Spain (Spanish ECV 2011).
7. Pratesi M., Salvati N. (2007), Small Area Estimation: The EBLUP model based on spatially correlated random effects, Statistical Methods and Applications, 17(1), pp. 113-141.
8. United Nations (2015), Transforming our World: The 2030 Agenda for Sustainable Development, A/RES/70/1, UNITED NATIONS.
9. Verma V., Betti G. (2011), Taylor linearization sampling errors and design effects for poverty measures and other complex statistics, Journal of Applied Statistics, 38(8), pp. 1549-1576.
10. Verma V., Betti G., Gagliardi F. (2017), Fuzzy Measures of Longitudinal Poverty in a Comparative Perspective, Social Indicators Research, 130(2), pp. 435-454.