Open Conference Systems, 50th Scientific meeting of the Italian Statistical Society

Font Size: 
Stochastic Dominance for Generalized Parametric Families
Tommaso Lando, Lucio Bertoli-Barsotti

Last modified: 2018-06-08


The T-X family is a recent method for generating distributions by composing probability distributions and quantile functions. Such an approach makes it possible to obtain a large number of flexible families of parametric distributions, new or already existing, most of which are typically used to model phenomena in different areas, such as economics and finance. We present a general method to derive sufficient conditions for the second-order stochastic dominance, within T-X families of distributions.


1. Alexander, C., Cordeiro, G. M., Ortega, E. M., Sarabia, J. M.: Generalized beta-generated distributions. Computational Statistics & Data Analysis, 56(6), 1880-1897 (2012).

2. Aljarrah, M. A., Lee, C., Famoye, F.: On generating T-X family of distributions using quantile functions. Journal of Statistical Distributions and Applications, 1(1), 2 (2014).

3. Alzaatreh, A., Lee, C., Famoye, F.: A new method for generating families of continuous distributions. Metron, 71(1), 63-79 (2013).

4. Hanoch, G., Levy, H.: The efficiency analysis of choices involving risk. The Review of Economic Studies, 36(3), 335-346 (1969).

5. Kleiber, C., Kotz, S.: Statistical size distributions in economics and actuarial sciences (Vol. 470). John Wiley & Sons (2003).

6. Lando, T. & Bertoli-Barsotti, L. Stochastic dominance relations for T-X families of distributions. Submitted manuscript.

7. McDonald, J. B.: Some generalized functions for the size distribution of income. Econometrica: Journal of the Econometric Society, 647-663 (1984).

8. Ramos, H. M., Ollero, J., Sordo, M. A.: A sufficient condition for generalized Lorenz order. Journal of Economic Theory, 90(2), 286-292 (2000).

9. Shaked, M.: Dispersive ordering of distributions. Journal of Applied Probability, 19(2), 310-320 (1982).

10. Wilfling, B.: Lorenz ordering of generalized beta-II income distributions. Journal of Econometrics, 71(1), 381-388 (1996).

Full Text: DOC