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Abstract Recently, Rigon and Durante (2018) discussed a Bayesian nonparametric
dependent mixture model, which is based on a predictor-dependent stick-breaking
construction. They provided theoretical support and proposed a variety of algo-
rithms for posterior inference, including a Gibbs sampler. Their results rely on a
formal representation of the stick-breaking construction, which has an appealing
interpretation in terms of continuation-ratio logistic regressions. In this paper we re-
view the contribution of Rigon and Durante (2018), and we extend their proposal to
the case of partial exchangeability with count data. As an illustration of this method-
ology, we analyze the number of epileptic seizures of a single patient in a clinical
trial.
Abstract Recentemente, Rigon e Durante (2018) hanno discusso un modello di mis-
tura bayesiano nonparametrico basato su una costruzione di tipo stick-breaking
e dipendente da covariate. Gli autori hanno fornito sostegno teorico e hanno in-
trodotto vari algoritmi per condurre inferenza a posteriori, incluso un campiona-
mento di tipo Gibbs. I loro risultati si basano su una rappresentazione formale
della costruzione stick-breaking, la quale ha un’interessante interpretazione in ter-
mini di regressioni logistiche sequenziali. In questo contributo, viene sintetizzata
la proposta di Rigon e Durante (2018), e viene estesa la loro proposta nel caso
parzialmente scambiabile con dati di conteggio. Per illustrare le loro metodologie,
vengono analizzati il numero di attacchi epilettici di un singolo paziente durante un
test clinico.
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1 Introduction

Let Y1, . . . ,Yn ∈ N be a collection of count response variables, each correspond-
ing to a qualitative covariate xi ∈ {1, . . . ,J}, for i = 1, . . . ,n. The observations
y1, . . . ,yn from Y1, . . . ,Yn can be naturally divided in J distinct groups, given the
covariates x1, . . . ,xn. Our goal is to flexibly model the conditional distributions
pr(Y = y | x = j) = p j(y), for j = 1, . . . ,J, under the assumption that each data
point yi is a conditionally independent draw from

(Yi | xi = j) ind∼ p j, i = 1, . . . ,n, (1)

where p j denotes the probability mass function of the random variable (Yi | xi = j).
Within the Bayesian framework, assumption (1) is known as partial exchangeabil-
ity, and model elicitation is completed by specifying a prior law QJ for the vector of
probability distributions: (p1, . . . , pJ)∼QJ . Broadly speaking, the partial exchange-
ability assumption reflects an idea of homogeneity within the J subsets of obser-
vations but not across them. The prior measure QJ governs dependence between
groups, allowing borrowing of information across them. Maximal dependence, i.e.
exchangeability, is attained if QJ is such that p1 = · · ·= pJ almost surely, reflecting
the prior belief that observations belong to the same latent population. Conversely,
the case of full heterogeneity arises if each random probability distribution p j is
independent on p j′ for any j 6= j′, implying that the distinct J groups share no in-
formation.

A common and flexible formulation for QJ is given by mixture models of the
form p j(y) =

∫
Θ

K(y;θ)dPj(θ), where K(y;θ) denotes a known kernel function
and Pj(θ) a random discrete mixing measure which is allowed to change across
groups. In this paper we consider the class of predictor–dependent infinite mixture
of Poisson distributions

p j(y) =
∫

Θ

Pois(y;θ)dPj(θ) =
+∞

∑
h=1

πh jPois(y;θh), j = 1, . . . ,J, (2)

where πh j = νh j ∏
h−1
l=1 (1− νl j) are group–dependent mixing probabilities having

a stick-breaking representation [11], and Pois(y;θ) denotes the probability mass
function of a Poisson with mean θ . Additionally, we assume that the atoms θh in
(2) are independent and identically distributed (iid) draws from a diffuse baseline
measure P0, that is, θh ∼ P0 independently for h = 1, . . . ,+∞ and independently on
the weights πh j. As for the stick-breaking weights νh j, we let

logit(νh j) = αh j, with αh = (αh1, . . . ,αhJ)
ᵀ iid∼ NJ(µα ,Σα), (3)

independently for every h = 1, . . . ,+∞. Specification of equations (2)-(3) can be
regarded as a particular instance of the more general logit stick-breaking process
(LSBP) of [8, 9], in which the covariate space is finite dimensional and with a Pois-
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son kernel. As such, it inherits all the theoretical and computational properties of
LSBP processes, some of which are reviewed in this manuscript.

Let us first consider an equivalent formulation of the logit stick-breaking Poisson
mixture model of equations (2)-(3). Leveraging standard hierarchical representa-
tions of mixture models, the independent samples y1, . . . ,yn can be obtained equiv-
alently from the random variable

(Yi | Gi = h)∼ Pois(θh),

pr(Gi = h | xi = j) = πh j = νh j

h−1

∏
l=1

(1−νl j),
(4)

for every unit i = 1, . . . ,n, where Gi ∈ {1,2, . . . ,+∞} is a categorical random vari-
able denoting the mixture component associated to the i-th unit. Each indicator Gi
has probability mass function p(Gi | xi = j) which can be written, after some alge-
braic manipulation, as

p(Gi | xi = j) =
+∞

∏
h=1

π
1(Gi=h)
h j =

+∞

∏
h=1

ν
1(Gi=h)
h j (1−νh j)

1(Gi>h), (5)

for any j = 1, . . . ,J. Equation (5) suggests an appealing interpretation of the stick-
breaking weights νh j as the allocation probabilities to component h, conditionally
on the event of surviving to the previous 1, . . . ,h−1 components, precisely

νh j = pr(Gi = h | Gi > h−1,xi = j), (6)

for each h = 1, . . . ,+∞ and j = 1, . . . ,J. This result, together with the prior formula-
tion of equation (3), allows to interpret the stick-breaking construction (4) in terms
of continuation–ratio logistic regressions [12]. This connection with the literature on
sequential inference for categorical data is common to all the stick-breaking priors
[e.g. 1, 8–10] and provides substantial benefits. Indeed, this characterization im-
plies a simple sequential generative process for each membership indicator Gi and
facilitates the implementation of a Gibbs sampler for posterior inference.

We briefly recall here the generative mechanism underlying equations (4), as
described in [9], for the j-th group of observations. In the first step of the sequential
process, each unit of the j-th group is either assigned to the first component Gi = 1
with probability ν1 j or to one of the subsequents with probability 1−ν1 j. If Gi = 1
the process stops, otherwise we draw another binary indicator, with probability ν2 j,
to decide whether Gi = 2 or Gi > 2. The following steps proceed in a similar manner.
Thus, we can reformulate each 1(Gi = h) = ζih, that is, the assignment indicator of
each unit to the h-th component, in terms of binary sequential choices

ζih = zih

h−1

∏
l=1

(1− zil), (zih | xi = j)∼ Bern(νh j), (7)
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for each h = 1, . . . ,+∞ and j = 1, . . . ,J, where zih is a Bernoulli random variable
representing the h-th sequential decision.

2 Theoretical properties

Let (P1, . . . ,PJ) denote the vector of dependent random probability measures on R+

induced by the LSBP in equation (2). Thus, each random probability measure Pj can
be represented as

Pj(·) =
+∞

∑
h=1

πh jδθh(·), j = 1, . . . ,J. (8)

The stick-breaking representation of the πh j implies that the random weights πh j
sum to 1 almost surely. Although this result is straightforward to derive, it should
not taken for granted because of the analogy with [11], which leverages on peculiar
characteristics of the Dirichlet process. This property is formalized in Proposition 1.

Proposition 1 (Rigon and Durante (2018)). Let (P1, . . . ,PJ) be a vector of random
probability measures defined as in (8) and with stick-breaking weights defined as
in (3). Then, ∑

+∞

h=1 πh j = 1 almost surely for any j = 1, . . . ,J.

Proposition 2 provides some insights about the first two moments of the random
vector (P1, . . . ,PJ).

Proposition 2 (Rigon and Durante (2018)). Let (P1, . . . ,PJ) be a vector of random
probability measures defined as in (8), with stick-breaking weights defined as in (3).
Then, for any measurable set B, and for any j = 1, . . . ,J and j′ = 1 . . . ,J, it holds

E{Pj(B)}= P0(B),

cov{Pj(B),Pj′(B)}= P0(B)(1−P0(B))
E(ν1 jν1 j′)

E(ν1 j)+E(ν1 j′)−E(ν1 jν1 j′)
.

The expectation of Pj(·) coincides with the base measure P0(·), which can be there-
fore interpreted as the prior guess for the mixing measure for any j = 1, . . . ,J. Also,
the variance of the random probability Pj(B) can be recovered from the above co-
variance by letting j = j′. Unfortunately, the expectations in Proposition 2 are not
available in closed form, although they can be easily computed numerically.

As noted by [9], the prior covariance between pairs of random probabilities is
governed by the hyperparameters in specification (3) and it is always positive. From
a modeling standpoint, this suggests that full heterogeneity among groups—using
the terminology of Section 1—can be approximated for some suitable choice of the
hyperparameters but it cannot be attained completely. A similar reasoning holds also
for maximal dependence among groups which, again, arises only as a limiting case.
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3 Posterior inference via Gibbs sampling

In this section we adapt the Gibbs sampler of [9] to the proposed infinite mixture
model of Poisson distributions. Our approach exploits representation (4) and the
continuation–ratio characterization of the logit stick-breaking prior. By conditioning
on the latent indicators G1, . . . ,Gn, the model reduces to a set of standard conjugate
updates—one for each mixture component—as long as the prior distribution of the
atoms is

θh ∼ Gamma(aθ ,bθ ), h = 1, . . . ,+∞.

Moreover, exploiting the sequential representation, posterior inference for the stick-
breaking parameters αh in (3) proceeds as in a Bayesian logistic regression in which
the latent binary indicators zih in (7) play the role of the response variables, precisely

(zih | xi)∼ Bern
(
{1+ exp(−ψ(xi)

ᵀ
αh)}−1) , (9)

for each i = 1, . . . ,n and h = 1, . . . ,+∞, where ψ(xi) = {1(xi = 1), . . . ,1(xi = J)}ᵀ,
and with 1(·) denoting the indicator function. To perform conjugate inference also
for αh, we adapt a recent Pólya-Gamma data augmentation scheme for logistic re-
gression [7] to our statistical model, which relies on the following integral identity

ezihψ(xi)
ᵀαh

1+ eψ(xi)ᵀαh
=

1
2

∫
R+

f (ωih)exp
{
(zih−0.5)ψ(xi)

ᵀ
αh−ωih(ψ(xi)

ᵀ
αh)

2/2
}

dωih,

for each i = 1, . . . ,n and h = 1, . . . ,+∞, where f (ωih) denotes the density func-
tion of a Pólya-gamma random variable PG(1,0). Thus, the updating of αh for any
h = 1, . . . ,+∞ can be easily accomplished noticing that—given the Pólya-gamma
random variables ωih—the contributions to the log-likelihood are quadratic in αh
and hence conjugate under the Gaussian priors (3). Moreover, the conditional den-
sity

f (ωih | αh) =
exp[−0.5{ψ(xi)

ᵀαh}2ωih] f (ωih)

[cosh{0.5ψ(xi)ᵀαh}]−1 ,

defined for every i = 1, . . . ,n and h = 1, . . . ,+∞, is still a Pólya-Gamma ran-
dom variable—and therefore conjugate—with updated parameters f (ωih | αh) ∼
PG(1,ψ(xi)

ᵀαh). This scheme allows posterior inference under a classical Bayesian
linear regression.

Before providing a detailed derivation of the Gibbs sampler, we first describe a
truncated version of the vector of random probability measure (P1, . . . ,PJ), which
can be regarded as an approximation of the infinite process. In line with [8–10], we
develop a Gibbs sampler based on this finite representation, which has key compu-
tational benefits. We induce the truncation by letting νH j = 1 for some integer H > 1
and any j = 1, . . . ,J, which guarantees that ∑

H
h=1 πh j = 1 almost surely. According

to Theorem 1 in [9], the discrepancy between the two processes is exponentially
decreasing in H, and therefore the number of components has not to be very large
in practice to accurately approximate the infinite representation. Refer to [9] for a
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Algorithm 1: Steps of the Gibbs sampler
begin

[1] Assign each unit i = 1, . . . ,n to a mixture component h = 1, . . . ,H;
for i from 1 to n do

Sample Gi ∈ (1, . . . ,H) from the categorical variable with probabilities

pr(Gi = h | −) =
πhxi Pois(yi;θh)

∑
H
q=1 πqxi Pois(yi;θq)

,

for every h = 1, . . . ,H.

[2] Update the parameters αh, h = 1, . . . ,H−1;
for h from 1 to H−1 do

for every i such that Gi > h−1 do
Sample the Pólya-Gamma data ωih from (ωih | −)∼ PG(1,ψ(xi)

ᵀαh).

Given the Pólya-Gamma data, update αh from the full conditional

(αh | −)∼ NJ(µαh ,Σαh ),

having µαh = Σαh{Ψ
ᵀ

h κh +Σ−1
α µα}, Σαh = {Ψ

ᵀ
h ΩhΨh +Σ−1

α }−1,
Ωh = diag(ωi1, . . . ,ωin̄h ) and κh = (zi1−0.5, . . . ,zin̄h −0.5)ᵀ, with zih = 1 if
Gi = h and zih = 0 if Gi > h.

[3] Update the kernel parameters θh, h = 1, . . . ,H, in (2), leveraging standard results;
for h from 1 to H do

Sample the parameters θh from the full conditional

(θh | −)∼ Gamma

(
aθ + ∑

i:Gi=h
yi, bθ +

n

∑
i=1

1(Gi = h)

)
.

more formal treatment. As a historical remark, the idea of truncating discrete non-
parametric priors was firstly given by [6] and later developed by [3]. Theorem 1
in [9] is somehow the analogue of these results, for a class of models beyond ex-
changeability.

Let Ψh denote the n̄h× J predictor matrix in (9) having row entries ψ(xi)
ᵀ, for

only those statistical units i such that and Gi > h− 1. The Gibbs sampler for the
truncated representation of model (2) alternates between the full conjugate updating
steps in Algorithm 1.

4 Illustration

As an illustration of the proposed methodology, we apply the LSBP Poisson mixture
model to the seizure dataset, which was already analyzed in [13] and is available
in the flexmix R package [2]. Data are extracted from a clinical trial conducted
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at the British Columbia’s Children’s Hospital, aiming to assess the effect of intra-
venous gamma globulin in reducing the daily frequency of epileptic seizures. Our
dataset consists of daily myoclonic seizure counts (seizures) for a single sub-
ject, comprising a series of n = 140 days. After 27 days of baseline observation
(Treatment: No), the subject received monthly infusions of intravenous gamma
globulin (Treatment: Yes). The relative frequency of counts are shown in the
upper plots of Figure 1, where the two groups—days with treatment and days with-
out treatment—are compared.

Treatment: Yes Treatment: No
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Fig. 1 Upper plots: for the two groups of observations (Treatment: Yes and Treatment:
No), the relative frequencies of the daily number of myoclonic seizure counts are reported. Lower
plots: for both groups of observations the (MCMC) posterior expectation of the probability mass
function arising from the LSBP model is reported.

As evidenced by the raw frequencies displayed in Figure 1—which seem to
present a multimodal structure—and consistent with the discussion in [13], a sim-
ple parametric formulation might be overly restrictive for the data at our disposal,
thus motivating flexible representations. Additionally, regardless the effectiveness
of the treatment, some form of dependence structure among observations from the
two groups is expected, since they all refer to the same subject.

Consistent with these considerations, we model the seizures counts using
the flexible mixture of Poissons described in Section 1. The number of groups is
J = 2. As prior hyperparameters for the stick-breaking weights in (3), we set µα =
(0,0) and Σα = diag(1000,1000), expressing the prior belief of a moderate amount
of dependence among groups. As for the kernels parameters, we set aθ = bθ =
0.05, inducing a prior centered on 1 with a relatively large variance. Finally, we
truncated the infinite mixture model choosing a conservative upper bound H = 20
for the number of mixture components. Although other hyperparameters settings
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are certainly possible, this would require a careful sensitivity analysis, which is
beyond the scope of this paper. The Gibbs sampler in Section 3 was run for 50000
iterations, discarding the first 5000 draws as a burn-in period. The traceplots showed
a satisfactory mixing and no evidence against convergence.

In the lower plots of Figure 1 we report the MCMC approximation of the poste-
rior expectation for the probability mass function under the proposed LSBP Poisson
mixture model, for the two groups. From this simple posterior check, it is apparent
that our model is able to capture the main tendencies of the data. In particular, the
proposed mixture model effectively resembles the multimodal behavior of the data.
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