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Abstract Vaccine refusal has proven to be a persistent foe in efforts to protect pop-
ulations from infectious diseases. One hypothesis about its origin posits a coupling
between vaccinating behaviour and disease transmission: when infection prevalence
is sufficiently low, individuals become complacent and vaccinating becomes less de-
sirable, causing a decline in vaccine coverage and resurgence of the disease. This
dynamic is being explored in a growing number of mathematical models. Here, I
present a differential equation model of coupled behaviour-disease dynamics for
vaccine-preventable paediatric infections, and I discuss previous research that has
applied various statistical methodologies to parameterize and validate the model. I
will show how methodologies such as model selection analysis and statistical learn-
ing, in conjunction with mechanistic modelling, can be used to test for the pres-
ence of phenomena related to coupled behaviour-disease dynamics during episodes
of vaccine refusal. These phenomena include social learning and imitation, social
norms, criticality, and coupling between vaccinating behaviour and disease preva-
lence. Some of these methodologies exploit new data sources such as online social
media. I conclude that the study and modelling of vaccine refusal can greatly bene-
fit from using mechanistic models informed by both traditional and state-of-the-art
statistical methodologies.
Abstract L’opposizione ai vaccini è un fenomeno persistente che indebolisce la ca-
pacità delle comunità di difendersi dalle malattie infettive. La spiegazione di base
del rifiuto vaccinale postula l’esistenza di un’interazione tra decisione di vaccinare
e trasmissione dell’infezione: quando la prevalenza di infezione è sufficientemente
bassa il beneficio percepito dalla vaccinazione è a sua volta basso, il che a lungo
andare causerà una discesa della copertura vaccinale, creando le premesse per
una “risorgenza” della malattia. Queste dinamiche sono state analizzate in un nu-
mero crescente di studi modellistici. In questo lavoro presento un modello per in-
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fezioni pediatriche prevenibili da vaccino, come il morbillo, che accoppia le di-
namiche dell’infezione con quelle delle decisioni vaccinali, e discuto le ricerche di
tipo statistico che si sono occupate della parametrizzazione e validazione di queste
classi di modelli. In particolare cerco di mettere in luce il ruolo delle metodolo-
gie statistiche (p.e., teoria dell’informazione, statistical learning, etc) per verifi-
care la presenza di fenomeni di interazione tra decisioni individuali e prevalenza
dell’infezione durante epoche di rifiuto dei vaccini. Lo studio di questi fenomeni, che
includono l’apprendimento via imitazione, il ruolo delle norme sociali, e la presenza
di vari effetti “critici”, ha potuto in tempi recenti sfruttare le potenzialità dei dati
forniti dai “social”. Concludo discutendo l’importanza di combinare le metodolo-
gie statistiche tradizionali con le nuove tecniche della “data science” nello studio
dell’opposizione ai vaccini.

Key words: behavioural epidemiology, vaccine refusal, coupled behaviour-disease
systems, statistical learning, model selection

1 Vaccine-preventable infectious diseases: some background

Infectious diseases have long imposed a considerable burden on human health [36].
Improvements in nutrition, sanitation, hygiene and vaccines have considerably re-
duced this burden [9]. Smallpox was globally eradicated largely due to use of ring
vaccination [20]. Even measles–which is highly transmissible–has been eliminated
through universal vaccination programs in many countries, and the elimination of
measles from the WHO Region of the Americas raises the possibility that even
measles could one day be globally eradicated [16]. As our vaccine technologies and
ability to administer them improve, universal vaccine access could become replaced
as the primary barrier to elimination and eradication by vaccine refusal. In high-
and low-income countries alike, vaccine refusal has led to resurgence of previously
eliminated diseases such as measles [28], and has even delayed the eradication of
polio by at least a decade [33].

Vaccines provide direct protection to vaccinated individuals by stimulating their
immune response to specific antigens, but most vaccines also provide indirect pro-
tection for unvaccinated individuals by interrupting pathogen transmission [1, 31].
The transmission of infectious diseases can be mathematically modelled through
compartmental models, which assume that individuals are divided into mutually
exclusive compartments based on their infection status, and which tracks the transi-
tions between these compartments through linear or nonlinear processes [1, 31]. For
instance, the classic Susceptible-Infectious-Recovered (SIR) deterministic model
with vaccination, births and deaths assumes that the population is divided into sus-
ceptible, infectious and recovered (immune) individuals, and is represented by:

dS
dt

= µ(1− pε)−βSI −µS , (1)
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dI
dt

= βSI − γI −µI , (2)

dR
dt

= µ pε + γI −µR . (3)

where S is the proportion of the population that is susceptible, I is the proportion
infectious, R is the proportion recovered, µ > 0 is the mean birth/death rate, β > 0
is the mean transmission rate, 1/γ > 0 is the mean duration of the infectious pe-
riod, 0 ≤ p ≤ 1 is the vaccine coverage, and 0 ≤ ε ≤ 1 is the vaccine efficacy [31].
We assume that a proportion p of individuals are vaccinated at birth and, more-
over, a proportion ε of those individuals were efficaciously immunised, entering the
R compartment. The remaining proportion 1− pε enter the susceptible compart-
ment at birth. We also assume that the birth rate equals the death rate and hence the
population size is constant. Note that the R equation does not appear in the S or I
equations, and since birth and death rates are equal, R = 1−S− I therefore we can
characterize the system entirely in terms of S and I. This system has two equilibria:

E1 = (S1, I1) = (1− pε,0) (4)

E2 = (S2, I2) =

(
γ +µ

β
,

µ

γ +µ

(
1− pε − γ +µ

β

))
(5)

It is possible to show that the elimination threshold–the proportion of individuals
who should be vaccinated in order to eliminate the infection–is given by

pcrit =
1
ε

(
1− 1

R0

)
(6)

where the basic reproductive ratio R0 = β/(γ + µ) is interpreted as the average
number of secondary infections produced by a single infected individuals in an oth-
erwise susceptible population [1]. (In the absence of vaccination, when R0 < 1, the
disease-free equilibrium E1 is stable, but when R0 > 1, the disease-free state loses
stability and the system converges instead to the endemic equilibrium E2.) When
p ≥ pcrit , the disease-free state E1 is globally asymptotically stable, hence the in-
fection is eliminated [31]. However, when p < pcrit , E2 is globally asymptotically
stable and the infection is endemic [31].

2 Coupled behaviour-disease systems

The SIR model, equations (1)-(3), represents a world where vaccine coverage is
fixed at a specified level p. This is probably applicable where a decision-maker can
assume that all eligible individuals will receive a vaccine. However, as we have
noted in the first few paragraphs of this paper, vaccine refusal is an increasing prob-
lem. Therefore, we cannot always take it for granted that p will be fixed at suffi-
ciently high to eliminate an infection from a population.
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Multiple factors influence vaccine decision-making. However, several lines of
evidence indicate that individuals are more likely to get vaccinated if (1) they per-
ceive a risk of becoming infected (either due to an ongoing outbreak, possible future
outbreaks, or due to a personal history of infection), (2) they perceive a risk of se-
rious complications due to infection, and/or (3) they believe that the vaccine is safe
and effective [25, 15, 13, 10, 44]. Indeed, we might have predicted the first factor
from the SIR model: once p = pcrit is obtained, the infection has been eliminated.
In that case, any small real or perceived risk of suffering an adverse effect from the
vaccine appears large compared to zero risk of being infected, thus the vaccine be-
comes undesirable and vaccine coverage can fall back below pcrit . Hence, we have
a situation where individuals influence disease prevalence through their decision
to become vaccinated, but disease prevalence in turn influences vaccine decision-
making through individuals’ desire to avoid becoming infected. We can therefore
conceptualize this as a coupled behaviour-disease system, where disease dynamics
and behavioural dynamics are combined into a single coupled system (Figure 1).
An increase in vaccine coverage reduces infection prevalence (negative feedback),
whereas an increase in infection prevalence boosts perception of infection risk and
therefore boosts vaccine coverage (positive feedback), hence together they form a
negative feedback loop leading to a stable state of endemic infection and interme-
diate vaccine coverage. Similar approaches to coupling human and natural systems
have been taken up by ecologists and environmental scientists studying terrestrial
and other ecosystems [34, 32, 2, 8, 30].

The importance of this interaction between infection and behaviour was not lost
on the mathematical epidemiologists of the late twentieth century. Perhaps the ear-
liest work to incorporate behaviour into epidemic dynamics was by Capasso and
Serio, who proposed a model where the infection incidence term βSI in the SIR
compartmental model is modified to take into account behavioural reactions to
changing infection incidence during an outbreak [14]. Year later, the HIV/AIDS
pandemic stimulated research on modelling the dynamics of core groups in infec-
tion transmission models, where recruitment into the core group depends on infec-
tion prevalence [27]. Economists and epidemiologists studied the problem from the
perspective conflicts between individual interest and socially optimal approaches
starting in the 1980s and 1990s as well [21, 11]. Subsequently, models of coupled

Fig. 1 Schematic diagram of
a coupled behaviour-disease
system. Increasing vaccine
coverage reduces infection
prevalence, which in turn
causes a drop in vaccine
coverage if the population
becomes complacent due to
lack of infections. The result
is a negative feedback loop.

Infec&on	
prevalence	

Vaccine	
coverage	

Risk	percep&on	

Direct	and	indirect	
protec&on	
-	

+	



Challenges and opportunities in modelling vaccine refusal 5

behaviour-disease interactions started becoming popular starting in the mid-2000s
[7, 3, 26, 18, 19] (see Refs. [23, 6, 35, 45, 22, 46, 43] for reviews).

A game theoretical treatment of vaccine refusal provides a clear example of how
adding adaptive human behaviour changes the predictions of epidemic models. For
instance, following the approach of Ref. [5] for equations (1)–(3), it is possible to
find the Nash equilibrium vaccine coverage p∗ at which the payoff for an individual
to vaccinate equals the payoff for an individual not to vaccinate. This turns out to
be the vaccine coverage that should be exhibited by a population of rational, self-
interested agents [5]. The expression is

p∗ =
1
ε

(
1− 1

R0(1− rv/ri)

)
(7)

where rv is the perceived risk of vaccine side effects and ri is the perceived risk
of infection complications. By comparing this expression to equation (6) for the
elimination threshold, it is clear that p∗ < pcrit when 0< rv < ri. Due to the free-rider
effect, it should therefore be impossible to eliminate an infection under a voluntary
vaccination policy in a population of rational, self-interested agents [21, 5].

However, individuals are not rational self-interested agents when it pertains to
vaccinating decisions [25, 15, 13, 10, 44]. For instance, peer imitation is an impor-
tant feature of vaccinating behaviour that can be incorporated into epidemic models
[17]. In the remainder of this paper we use a model that accounts for more realis-
tic processes including imitation (social learning), social norms, and use of rule-of-
thumb (heuristics) to determine infection risks [37]. The SIR equations are modified
by replacing constant vaccine coverage p by a dynamic vaccine coverage x, where
x is determined by a differential equation capturing how individuals learn vaccine
opinions from others. A perfectly efficacious vaccine is assumed (ε = 1) which is
a good approximation to the actual effectiveness for multi-course doses of most
common pediatric vaccines. The model equations are:

dS
dt

= µ(1− x)−βSI −µS , (8)

dI
dt

= βSI − γI −µI , (9)

dR
dt

= µx+ γI −µR , (10)

dx
dt

= κx(1− x) [−ω + I +δ (2x−1)] . (11)

In these equations, x is the proportion of the population favouring vaccination;
ω ≡ rv/mri controls the relative effects of the perceived risk of vaccine compli-
cations rv, the perceived risk of infection complications ri, and a proportionality
constant m determining the perceived probability of becoming infected as a function
of current infection prevalence I(t) (the ‘rule of thumb’ for determining individual
risk of becoming infected); δ is the strength of social norms; κ represents the social
learning rate; and other parameters and variables are as in equations (1)–(3). In this
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model, individuals are either vaccinators or non-vaccinators and sample other indi-
viduals at a specified rate. If the other person being sampled is playing a different
strategy and is receiving a higher utility, the given individual will change to that
strategy with a probability proportional to the expected gain in utility (see Ref. [37]
for details). When I is higher, more individuals will switch to a vaccinator strategy
by imitating others. But when ω is higher due to higher perceived vaccine risk, or
lower perceived risk of infection or infection complications, then more individuals
will switch to a non-vaccinator strategy. The social norms term δ (2x−1) moves the
population in the direction of whichever strategy is more popular, and thus captures
peer pressure. We may remove the R equation since R does not appear in the other
equations, hence dynamics can be described completely through (S, I,x).

The coupled behaviour-disease model, equations (8)–(11), exhibits a broad range
of behaviour including 5 equilibria: a disease-free equilibrium where no one gets
vaccinated, (1,0,0); a disease-free equilibrium where everyone gets vaccinated,
(0,0,1); a disease-free equilibrium where part of the population are vaccinators; an
endemic equilibrium where no one gets vaccinated; and an endemic equilibrium
where part of the population are vaccinators. The model also exhibits stable limit
cycles where x and I oscillate (Figure 2). The model is characterized in Ref. [37].

3 Challenges and opportunities for statistics in coupled
behaviour-disease modelling

3.1 Parameterization and validation

Parameterizing and validating coupled behaviour-disease models present unique
challenges on account of both their larger dimensionality and their coupling. Even
with rich data on the epidemiological and sociological layers of the system in sep-
aration from one another (Figure 1), one is faced with the additional challenge of
obtaining data on the coupling between the two layers–an aspect often ignored in

Fig. 2 Example dynamics of
the coupled behaviour-disease
model in equations (8)–(11).
When κ is high, rapid social
learning destabilizes the non-
trivial equilibrium, causing
infection prevalence and
vaccine opinion to oscillats.
Other parameters: 1/µ = 50
yrs., 1/γ = 10 days, R0 = 10,
κ = 0.001. Figure reproduced
from Ref. [3].
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traditional epidemiological and sociological studies. Accordingly, statistical infer-
ence [29], probabilistic uncertainty analysis [24], and model selection analyses such
as use of information criteria [4, 37] are even more important for coupled behaviour-
disease models than for sociological models or disease dynamic models in the ab-
sence of coupling. Information criteria can be particularly helpful because higher
dimensionality and relative lack of data create hazards of over-fitting.

When the sample size n of a dataset is small compared to the number of param-
eters K being used to fit a model (n/K < 40), a variant of the Aikaike information
criterion known as the corrected Aikaike information criterion (AICc) may be used
(AICc = AIC + 2K(K + 1)/(n−K − 1)) [12]. Using AICc, the baseline model in
equations (8)–(11) has been compared to variant models lacking either the social
learning mechanism (such that individuals switch opinions immediately as soon as
the utility becomes more favourable, without learning the new opinion from peers);
feedback from infection prevalence (such that infection prevalence is not a part of
the utility function); or both mechanisms. The baseline model and its three variants
were compared under five different forms for the possible time evolution of rela-
tive risk perception during a vaccine scare, ω = ω(t) (see Figure 3, left-hand side).
The 5 × 4 = 20 models were fitted using maximum likelihood to vaccine coverage
and case notification data from the whole cell pertussis vaccine scare in the United
Kingdom in the 1970s-80s (Figure 3) [4]. Comparing the AICc for these 20 models
reveals interesting findings. Firstly, adding both social learning and prevalence feed-
back (i.e., using the baseline model) improved the AICc score and resulted in a better
fit for most of the risk evolution curves (Figure 3, first column). (The comparison
is worse under the bottom risk evolution curve, but this may be expected since an
arbitrarily good AICc score can be obtained by adding enough degrees of freedom
to the phenomenological curves that describes risk evolution.) Secondly, the vari-
ant model with infection prevalence feedback but no social learning (Figure 3, third
column) exhibited highly unstable dynamics that both yields poor AICc scores and
does not resemble vaccine coverage time series in any known system. This variant
can be taken as a representative of Homo economicus–the idea that humans adopt
Nash equilibria irrespective of social influences, while the baseline model including
social learning could be taken as representative of Homo socialis–humans as social
animals. Hence, this information theoretic exercise supports the notion that both in-
fection prevalence feedback and social learning are important parts of explaining
vaccine refusal in coupled behaviour-disease systems.

Model validation in coupled behavior-disease models can take the form of retro-
spectively testing of predictive power, for instance. For the pertussis vaccine scare,
equations (8)–(11) were also fitted to the early years of the vaccine scare to see
whether the model could predict the later years, and it was found that the first seven
years of data provided enough information to predict the last ten years of the time se-
ries with good accuracy, despite the simplicity of the model [4]. However, the model
did not show predictive power in retrospective analysis for the measles-mumps-
rubella (MMR) autism vaccine scare in the UK during the 1990s-2000s. This might
be due to the fact that measles dynamics were too irregular and stochastic through-
out most of the MMR vaccine scare and thus a deterministic differential equation



8 Chris T. Bauch

model might not be the right model to use in that situation. This is in contrast to the
pertussis vaccine scare where large ‘deterministic’ outbreaks occurred.

3.2 Applications of statistical learning

The previous section described the need for data on both sociological and epidemi-
ological subsystems. However, acquiring data for social subsystems–or sometimes
even epidemiological subsystems–can be a challenge. The advent of digital data
from sources like online social media has provided an alternative data source that
can complement existing methods such as social surveys and case notifications [39].
Digital social data have been used not only to study online sentiment relating to vac-
cinating behaviour [40] but also to predict the outbreaks themselves, such as through
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Fig. 3 Aikaike information criterion (AICc) scores and model fit of the coupled behaviour-disease
model compared to variants for the UK whole pertussis vaccine scare. Pertussis vaccine coverage
in the UK showed a steep decline over 5 years, from ∼80% to ∼30%, before commencing a
slow return trajectory to high coverage levels (black lines). The red lines show best-fitting models
for the baseline model (first column) and three variant models (second to fourth columns), for
5 risk evolution curves (rows, with form of curve shown on left). The numerical value in each
subpanel is the AICc value for the fit: more negative AICc values correspond to better scores, i.e.,
the model exhibits a better balance of explanatory power with as few parameters as possible. Figure
reproduced from Ref. [4].
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symptom searches on the Internet [39]. Accordingly, it can help investigators obtain
data on social dynamics, disease dynamics, and their coupled dynamics.

However, the amount of digital data is staggering compared to the size of most
conventional epidemiological datasets and it cannot be manually processed. Hence,
methods such as machine learning are required to analyze the data [42]. A particu-
larly common type of machine learning is statistical learning, in which a computer
is used to construct a probabilistic model of a dataset that exhibits statistical regu-
larities. The statistical learning algorithm may use a training set in order to improve
its probabilistic models. In Ref. [38], a statistical learning algorithm called a lin-
ear support vector machine (SVM) is used to study the 2014-15 California measles
outbreak, in which vaccine refusal played a considerable role. The algorithm classi-
fied tweets about MMR vaccines into ‘pro-vaccine’, ‘anti-vaccine’, and ‘other’ cate-
gories. The number of pro-vaccine tweets were taken to correspond to x in equations
(8)–(11) (see Ref. [38] for discussion of limitations of this assumption).

When the perceived vaccine risk ω increases sufficiently, equations (8)–(11) ex-
hibit a tipping point beyond which vaccine uptake falls dramatically and the dis-
ease becomes endemic again [38]. The authors hypothesized that California was
approaching this tipping point in the years before the relatively small Disneyland
outbreak, and then receded from the tipping point afterward as vaccination became
popular again. The approach and recession from a tipping point can be detected far
in advance through changes in statistical indicators such as the lag-1 autocorrelation,
coefficient of variation, and variance of a time series [41, 8]. The authors show that
three empirical datasets based on SVM-classified tweets generally show expected
trends, as predicted by equations (1)–(3) (Figure 4) [38].

This research suggests that vaccinating behaviour in coupled behaviour-disease
systems can be classified as a critical phenomenon, and may exhibit early warning
signals before widespread changes in behaviour such as the occurrence of large-
scale vaccine scares. Interestingly, the coefficient of variation of the anti-vaccine
time series of tweets shows a decline before the tipping point, instead of an increase
as shown in all other time series tested and as might be expected from other research
on tipping points in related systems [38]. The model predicts the same decline for
the coefficient of variation of antivaccinators, however, illustrating the importance
of using mechanistic models when interpreting statistical indicators.

4 Summary and Discussion

These examples illustrate the statistical challenges that emerge when parameteriz-
ing and validating coupled behaviour-disease models, as well as the synergies and
opportunities that may arise when statistical and mechanistic approaches are used in
conjunction. In the example of the model selection exercise, we saw how comparing
the AICc scores of different models supported the notion that vaccinating behaviour
is closer to the Homo socialis description than the Homo economicus description.
In the example of using statistical learning to analyze tipping points, we saw how
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algorithms like linear support vector machines can be used to analyze vast amounts
of online social media data to look for early warning signals of tipping points. The
need for using mechanistic models to help interpret statistical patterns was shown
by the decrease in coefficient of variation near a tipping point for anti-vaccinators,
instead of the increase that is more commonly expected.

This research also suggests a more general approach by which mechanistic mod-
els can help us to make sense out of the bewildering complexity of social data. Dy-
namics generally simplify near tipping points, such that different types of complex
nonlinear systems with highly divergent dynamics generally exhibit only the same
restricted set of possible dynamics near a tipping point [41]. Hence, looking for ev-
idence of tipping points in social media data is one possible way to begin moving
from current predominantly descriptive statistical approaches to social media data,
to statistically-informed mechanistic theories of social interactions.

These cases are only two selection-biased examples from a vast array of pub-
lished work on how statistics and mathematics can be used together to study coupled
behaviour-disease systems. For instance, a further opportunity not addressed here is
the use of stochastic models, which maybe be particularly relevant close to the dis-
ease elimination threshold, or when rare but scary events perceived to be associated
with vaccines or diseases occur. Moreover, new data sources such as online social
media are already generating new statistical methodologies, and will likely continue
to do so in the future. In conclusion, mechanistic approaches to coupled behaviour-
disease dynamics of vaccine refusal can benefit from close attention to use of rel-

significance level if the time just before the Disneyland outbreak is
included. The decline in the coefficient of variation before the
tipping point for antivaccine but not provaccine sentiment occurs
because the statistic divides the SD by the mean. The mean number
of nonvaccinators increases from a small value as the tipping point
is approached, while the mean number of vaccinators decreases.

Google Trends. Google Trends (GT) is increasingly used in social
science and behavioral research (24) and the study of infectious
diseases (25, 26). Our search terms did not permit an analysis of
sentiment, but previous research indicates that salient and con-
troversial issues generate higher search volumes (27–29), including
a study finding a significant inverse correlation between MMR
vaccination coverage and Internet search activity, tweets, and
Facebook posts (28). If we assume salient and controversial issues
are ones on which population opinion is more divided, we can
study CSD in the GT Internet search index concerning measles-
related searches. These data are also consistent with critical dy-
namics near a tipping point. The GT data at the national and state
levels generally show the same pattern as the Twitter data, with a
rise in indicators before the outbreak and a decline afterward (Fig.
5). Trends are stronger at state than national levels, and for MMR
rather than measles searches, which may reflect the greater volume
of GT data on MMR than measles (Fig. 1B).

Sensitivity Analyses. We generated Figs. 3 and 4 using weekly
instead of daily bins. For provaccine tweets (SI Appendix, Fig.
S1), the variance always increases and then decreases, similar to
the daily data. Lag-1 AC shows no trend or tends to decline
before the tipping point. However, lag-1 AC measures changes in

memory, and this is to be expected in a system where memory is
short-lived: the life span of a typical online social media news
item is less than 24 h (30), suggesting daily or subdaily granu-
larity may be required to detect changes in lag-1 AC. The co-
efficient of variation exhibits a statistically significant increase
and decrease before and after the outbreak. Most of these pat-
terns are repeated in the analysis of antivaccine tweets using
weekly bins (SI Appendix, Fig. S2). Results were also qualitatively
unchanged when changing the rolling window width used for
temporal averaging (SI Appendix, Figs. S3–S11).
We analyzed an extended model that includes seasonal varia-

tion in the transmission rate and an Erlang-distributed infectious
period, both of which are known to influence disease dynamics
(31, 32). We found that the indicator trends were unaffected (SI
Appendix, Fig. S12). Through a probabilistic sensitivity analysis, we
found that results are qualitatively unchanged across a broad
range of parameter values (SI Appendix, Fig. S13). To study when
happens when the relative vaccine risk responds to infection in-
cidence, we simulated a variant model where ω(t) = a + bI(t). This
variant exhibited growth and decline in the indicators before and
after outbreaks, similar to Figs. 3–5 (SI Appendix, Figs. S14–S16).
To rule out that the observed increase and decrease in the indi-
cators can also happen around ordinary (noncritical) outbreaks,
we simulated the model at a fixed value of ω far from the critical
point. We found that all indicators were flat both before and after
noncritical outbreaks (SI Appendix, Fig. S17).

Discussion
This article presents evidence that coupled behavior–disease
dynamics near the disease elimination threshold is a critical
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Fig. 3. CSD provaccine tweets before and after
Disneyland measles outbreak. (A–D) Variance, (E–H)
lag-1 AC, and (I–L) coefficient of variation for (A, E,
and I) US GPS, (B, F, and J) US Location Field, (C, G,
and K) California Location Field data, and (D, H, and
l) model. The residual time series was used for vari-
ance and lag-1 AC. Kendall tau rank correlation co-
efficients are displayed before (regular font) and
after (italic) the Disneyland peak with P values
denoted by <. Window width used to compute roll-
ing averages is indicated by line interval. Shaded
region indicates outbreak time period. Model panels
show indicators averaged across 500 stochastic
model realizations (black), 2 SDs (shaded), and
10 example realizations (colored lines). See Methods
and SI Appendix, sections S3–S5 for details.
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Fig. 4. CSD in antivaccine tweets before and after
Disneyland measles outbreak. (A–D) Variance, (E–H)
lag-1 AC, and (I–L) coefficient of variation for (A, E,
and I) US GPS, (B, F, and J) US Location Field, (C, G,
and K) California Location Field data, and (D, H, and
I) model. The residual time series was used for vari-
ance and lag-1 AC. Kendall tau rank correlation co-
efficients are displayed before (regular font) and
after (italic) the Disneyland peak with P values
denoted by <. Window width used to compute roll-
ing averages is indicated by line interval. Shaded
region indicates outbreak time period. Model panels
show indicators averaged across 500 stochastic
model realizations (black), 2 SDs (shaded), and
10 example realizations (colored lines). See Methods
and SI Appendix, sections S3–S5 for details.
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Fig. 4 Critical slowing down in pro-vaccine tweets near a tipping point, before and after Disney-
land measles outbreak. (A-D) Variance, (E-H) lag-1 AC, and (I-L) coefficient of variation for (A, E,
and I) US GPS-derived data, (B, F, and J) US Location Field-derived data, (C, G, and K) California
Location Field-derived data data, and (D, H, and l) model predictions. The residual time series was
used for variance and lag-1 AC. Kendall tau rank correlation coefficients are displayed before (reg-
ular font) and after (italic) the Disneyland peak with p values denoted by <. Window width used
to compute rolling averages is indicated by line interval. Shaded region indicates outbreak time
period. Model panels show indicators averaged across 500 stochastic model realizations (black), 2
SDs (shaded), and 10 example realizations (colored lines). Figure reproduced from Ref. [38].
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evant empirical data for parameterization and validation, analyzed with both tra-
ditional and state-of-the-art statistical methods. Such empirically-driven modelling
may help us tackle problems of vaccine refusal around the world, and perhaps even
speed the global eradication of some vaccine-preventable infections.
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