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Abstract The mechanisms that control the diversification of species are poorly un-
derstood. Sophisticated diversification models have been developed, but they have
been developed on a case-by-case basis and no general method to study the com-
bined effect of ecological factors exists. Such a general method has remained elusive
for several reasons. Firstly, evolutionary processes have extremely complex dynam-
ics. Secondly, decay and fossilization degrade crucial evidence useful for phyloge-
netic analyses. Thirdly, diversification processes have many potential explanatory
variables, which increases the dimensionality of the models enormously. To over-
come these issues, we propose a general diversification model expressing the evolu-
tionary species diversification dynamics as a combination of two generalized linear
models. The fact that we typically only have data on currently existing species can
be described as a missing data problem and we developed an MCEM-type algorithm
for it. We show that our method performs well for cases where an exact solution is
available, and discuss potential future usage of our approach.
Abstract I meccanismi che controllano la diversificazione delle specie sono capiti
male. Sono stati sviluppati sofisticati modelli di diversificazione, ma sono stati
sviluppati caso per caso e senza un metodo generale. Un tale metodo generale ri-
masto elusivo per diverse ragioni. In primo luogo, i processi evolutivi hanno di-
namiche estremamente complesse. In secondo luogo, il decadimento e la fossiliz-
zazione hanno degradato le prove cruciali utili per le analisi filogenetiche. In terzo
luogo, i processi di diversificazione hanno molte potenziali variabili esplicative, che
aumentano enormemente la dimensionalit dei modelli. Per superare questi prob-
lemi, proponiamo un modello generale di diversificazione che esprima le dinamiche
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ernst.wit@usi.ch

1



2 Francisco Richter and Rampal Etienne and Ernst C. Wit

di diversificazione evolutiva delle specie come una combinazione di due modelli lin-
eari generalizzati. Il fatto che di solito abbiamo dati sulle specie esistenti presenti
pu essere descritto come algoritmo di tipo MCEM per questo. Dimostriamo che il
nostro metodo funziona bene per i casi in cui disponibile una soluzione esatta e
discutiamo il potenziale utilizzo futuro del nostro approccio.

Key words: species assemblages, Fokker-Planck, non-homogeneous Poisson pro-
cess, generalized linear models, EM

1 Introduction and motivation

Biodiversity, the wide variety of species on Earth, is declining at enormous rates
[2]. That compromises ecosystem stability and productivity, which negatively im-
pacts the ecosystem services on which human communities depend [3]. To conserve
biodiversity, we must understand the mechanisms how it comes about and how it is
maintained, in assemblages of species, so-called ecological communities.

It is our aim to incorporate the sources of high-dimensional ecological and bi-
ological data under a unified statistical framework in order to overcome the main
challenges that evolutionary biologists currently face. Particularly, the lack of infor-
mation of extinct species and the huge complexity of current stochastic differential
diversification models are bottlenecks for a proper inference on a general scenario.
In this report we propose a general method with the potential to provide practical
solutions for a large number of open questions in evolutionary biology and ecology.

2 Non-homogeneous Poisson process as driver of species
diversification

Birth-death processes has been systematically used to explain the evolutionary dy-
namics described on a phylogenetic tree [12],[13]. On that kind of process we as-
sume that each lineage has their speciation rate λ and extinction rate µ which can
be influenced by individual attributes, ecological or environmental factors, compo-
sition of the local biodiversity, etc. In the literature we find models where diver-
sifications are assumed to be constant [11], change through time [15], depends on
diversity [4], individual traits [14] and many other factors [10]. In order to achieve a
more realistic model, we are interested on flexible rates able to change dynamically
through all those factors simultaneously and taking into account the ecological na-
ture of species assemblages. In that sense the speciation rate of species j at moment
ti could also depends on other species traits and local interactions, as well as any
ecological influences described above.

We assume that the evolutionary process of diversification is driven by a Markov
process, i.e, the diversification event i is only influenced by the state on the previous



Stochastic network modelling of the evolutionary tree 3

event i−1

P(S(tn) = Tn|S(t0) = T0, ...,S(tn−1) = Tn−1) = P(S(tn) = Tn|S(tn−1) = Tn−1)

Thus, the distribution of the waiting times ∆ t j for a species j to have a diversification
event will be exponential [1] with rate λi+µi, and if a diversification event occurs it
will be an speciation with probability λ j

λ j+µ j
or an extinction with probability µ j

λ j+µ j

[16].

Fig. 1 Representation of a general birth-death process when birth and death rates depends on
several multidimensional covariates.

Similarly, looking at the whole phylogenetic process, given a previous diversifi-
cation time ti−1, we know that the next waiting time

∆ ti = min{∆ ti,1, ...,∆ ti,ni}

would be again exponential with rate ∑λi, j + µi, j and it will be an speciation of

species j with probability λi, j
∑λi, j+µi, j

or an extinction of species j with probability
µi, j

∑λi, j+µi, j
. We will define

ρi =
λi, j speciation
µi, j extinction

In that sense, if we focus on the number of species (diversity) per time N(t) we find
that is driven by a non-homogenous Poisson process with rate function σ(t), defined
as the sum of all individual speciation and extinction rates at moment t ,

σ(t) = σi,λ (t,xi)+σi,µ(t,xi) (1)

where

σi,λ (t,xi) =
ni

∑
j=1

λi, j(t,xi, j),

σi,µ(t,xi) =
ni

∑
j=1

µi, j(t,xi, j)
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Note that equation 1 represents the connection between the continuous (time) and
discrete (species) spaces. In this analysis we assume that σ(t) is step-wise function
of t. The possible extinctions to the continuous case will be discussed. That rate is
potentially dependent on many ecological variables, including diversity itself.

Fig. 2 Evolutionary process with 4 extant species at the present time tp and one extinction.

Considering that we can write the likelihood function of the Markov chain rep-
resenting the diversification process of species and performs statistical inference
winch would give us biological insight helpful to grow a better understanding of it.

3 Inference of species assemblages process

As described on the previous section, the Markov nature of the process means that
the likelihood is exactly the product of the conditional densities, in other words,
the likelihood of the tree is then described as a multiplication of an exponential
distribution and a multinomial distribution

L (θ ;τ, t) = ∏PE(t = ti;θ)PM(τ = τi|t = ti;θ) (2)

or

L (θ ;τ, t) =
M

∏
i=1

e−σitt ρi (3)

which, on the logarithm scale would be

l(φ ;τ, t) =
M

∑
i=1
−σitt + log(ρi) (4)
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corresponding to the log-likelihood function. We say that the tree T = (t,τ)

C = ∪∞
m=1Cm

where
Cm(T ) = {(τ, t) ∈ Rm×Zm

1 |t1 < t2 < ... < tn,∑ ti = 15}

3.1 Observing the full phylogenetic tree

If we observe the full phylogenetic tree, we can use directly the MLE to find the most
likely values for different parameters associated with ecological covariates which
are potentially involved on the diversification process of species. In that sense we
search for the solutions of the equations

∂ l(φ ;τi, ti)
∂φ

=
M

∑
i=1
−∂σi

∂φ
tt +

1
log(ρi)

∂ρi

∂φ
= 0

which for simple cases could lead to an analytical solution [16], but in most cases
these expressions are too complex and a numerical minimization method is needed
[14]. The numerical optimization is normally straightforward though since we as-
sume this function is unimodal, however, as stated on this section the calculation of
those values requires complete information on the phylogeny, which as discussed
previously, in most cases is not realistic. For the case when we do not have informa-
tion about fossil record, we would need to implement an EM algorithm to deal with
the missing data.

3.2 Observing the extant phylogenetic tree

Mathematically, we denote x ∈X as a random variable in the time-tree space and
probability distribution given by equation (2). We define the random variable y =
Y as the observed tree, which lives in the space of ultrametric trees [5] and has
probability distribution given by

g(y|φ) =
∫

X (y)
f (x|φ)dx (5)

considering X (y) as the subset of X in agreement with the observed tree y, that is,
X (y) = {x ∈X |Y (x) = y}.

In order to infer meaningful information about evolutionary dynamics we would
like to find the parameters φ which maximizes g(y|φ) given the observed tree y.
However, given the complexity of the space X (y), a close form for equation (5) is
not available [6]. A standard way to sort out the difficulties driven by missing in-
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formation is the EM algorithm. Thus, we describe its implementation on the species
diversification modeling context. One natural approach to this setup would be the
application of the EM algorithm to the time-tree space. We define the EM iteration
φ ∗→ φ as

E. Compute Q(φ |φ ∗) = Eφ∗(log f (x|φ)|y),
M.Choose φ to be the value of φ ∈Ω which maximizes Q(φ |φ ∗)

Note that
Eφ∗(log f (x;φ)|y) =

∫
X (y)

log fX (x;φ) fX |Y (x|y,φ ∗)dx

As shown previously in the case of equation (5), the calculation of Q(φ |φ ∗) has
not a close form due to the huge complexity of the space X (y), so numerical cal-
culations are needed. One way to perform this task is considering a Monte-Carlo
sampling [17], where, given a set of sampled trees x1, ...,xp from fX |Y (x|y,φ ∗), we
approximate Q(φ |φ ∗) by

Eφ∗(log f (x;φ)|y)≈ 1
p

p

∑
i=1

log fX ;φ∗(xi;φ) (6)

However, sampling complete trees given the observed ones from fX |Y (x|y,φ ∗) is
computationally infeasible. Thus, we use an approximation algorithm, inspired by
the Gillespie algorithm [9], correcting the error of the approximation via importance
sampling [7].

The idea of importance sampling techniques is to give more weight in the like-
lihood estimation to those sampled values that seems to be in more agreement with
the true sampling distribution fX |Y (x|y,φ ∗). In that sense we re-write equation 6
including weights such that

Eφ∗(log f (x;φ)|y)≈ 1
p

l

∑
i=1

log fX ;φ∗(x;φ |y)wi

where

wi =
fX |Y (x|y,φ ∗)
gX |Y (x|y,φ ∗)

=
fX ,Y ;φ∗(x,y)
gX ,Y ;φ∗(x,y)

Finally we perform the EM routine iteratively using the MC sampling with an im-
portance sampling correction.

4 Conclusions and discussion

In this paper, we looked at networks from a slightly different point of view. We
considered the species diversification process as a natural process that generates a
special type of network, namely a species tree. The speciation process is subject
to many random influences, having partly to do with the topology of the tree and
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partly on external influences. In this paper we define a random network/tree process
by means of a stochastic differential equation. The aim is to infer the parameters
underlying the process from the information we can obtain from the extant species
at the tips of the tree. This may seem an impossible process, but fortunately genetics
is helping out, typically allowing us to infer the – incomplete – evolutionary tree of
these species. In this paper we show how a MCEM algorithm can be used to infer
the kinetic parameters of the speciation process.

Finally, we like to raise one additional point. We consider a phylogenetic tree,
mathematically expressed as a set Y = (T ,ϒ ), where T represent the set of branch-
ing times, and ϒ has the information of the topology of the tree. PE is the probability
for t to be the minimum waiting time given by an exponential distribution. And PM
is the probability of, given the waiting time, that the topology event corresponds ei-
ther to extinction or speciation of one of the extant species at time t. That probability
is given by a multinomial distribution. However, equation (2) does not consider the
restriction

∑ ti <C, (7)

i.e., we implicitly assume that that likelihood is 0 when ∑ ti > C, where C defined
as the crown time.
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