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Abstract In many demographic applications the information of interest can only be
estimated indirectly. Modelling events and rates is typical for demographic analy-
ses so that statistical models based on counts are a natural starting point. We will
demonstrate that the Penalized Composite Link model is a versatile and valuable
tool to solve such indirect estimation problems in demography.
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1 Introduction

Demography deals with the analysis of populations and population dynamics, that
is, the change of populations over time with respect to their size and composition.
More specifically the discipline analyzes the processes that drive population change:
Mortality, fertility and migration, as well as related processes such as marriage or
divorce.

The models used to describe and to analyze these processes are mostly based on
age-specific rates (of fertility, mortality, . . . ) and the underlying data are the number
of events (births, deaths,. . . ) and the number of individuals at-risk of the event.
With its emphasis on rates and events, many methods in demography are based on
distributional models for counts (and corresponding exposures), so that extensions
of Poisson models are a natural starting point.

In many demographic applications the information of interest cannot be esti-
mated directly though, but indirect estimation procedures have to be employed. For
many applications the indirect estimation problem can be phrased as a Penalized
Composite Link Model (PCLM). This model combines a remarkable versatility of
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model formulation with modest additional assumptions, such as smoothness of rates
across age or across time. The resulting procedures are computationally efficient
which allows to handle large data sets that are common in demography.

In the next section we give a short summary of the PCLM, followed by several
demographic examples in Section 3.

2 The Penalized Composite Link Model

Based on the Composite Link Model suggested in [1] the model was extended by an
additional smoothness penalty in [2]. The model considers a series of Poisson counts
y1, . . . ,yn with E(yi) = µi. In contrast to a simple Poisson regression the means µi
are supposed to be linearly combined from a series of γ1, . . . ,γm so that

µi =
m

∑
j=1

ci jγ j . (1)

For the γ j the common specification of generalized linear models (GLM) is retained:
γ j = eη j and η j = ∑

p
k=1 x jkβk is the linear predictor. In matrix notation we can write

µ =Cγ, γ = eη , η = X β (2)

The matrix C determines how the expected values of the observable yi are com-
posed from the elements of γ . To estimate the parameters in the CLM, it can be
shown that the standard iteratively weighted least-squares algorithm (IWLS) can be
modified in the following way:

Define Γ = diag(γ), M = diag(µ) and U = M−1CΓ X . Then the next IWLS
iteration solves

Ũ ′M̃Ũ β = Ũ ′(y− µ̃)+Ũ ′M̃Ũ β̃ , (3)

where the tilde indicates current values in the iteration.
If the number of observations n is smaller than the number of parameters p, then

the problem is ill-conditioned but an additional penalty can help. This penalty will
constrain the elements of the parameter vector β and thereby will allow the estima-
tion of the model. A typical assumption is that the elements of γ are a smooth series.
In the simplest case of X = I and hence γ = eβ a difference penalty on the elements
of β will do the job. Alternatively we can express lnγ as a linear combination of
B-splines so that X holds the spline basis, see [3]. Again a difference penalty on the
elements of β will ensure the required smoothness of γ .

If D is a matrix that builds differences of order d (typically d = 1 or d = 2)
and λ is the smoothing parameter that balances the effect of the penalty relative
to the model deviance, then maximizing the penalized log-likelihood leads to the
following modified system of the IWLS for this penalized composite link model
(PCLM):

(Ũ ′M̃Ũ +λD′D)β = Ũ ′(y− µ̃)+Ũ ′M̃Ũ β̃ . (4)
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For detailed derivations see [2]. The choice of the optimal smoothing parameter λ

is usually done by minimizing an information criterion, AIC or BIC, over a grid of
λ -values.

3 Examples

3.1 Ungrouping coarse histograms

Many official data (life tables etc.) are reported in grouped form. Age-groups of
width 5 or 10 years are common and often the information on the elderly is summa-
rized in a rather wide open age-group such as 80+ or 85+. In aging societies more
detailed information on the higher ages is needed. Even if nowadays, in developed
countries, the last age-group has been changed into 100+ or 110+ in official statis-
tics, for studying time trends it is required that the coarsely grouped data can be
analyzed on a more detailed scale. In [4] it is demonstrated how the PCLM can be
employed for this purpose.

Let a1, . . . ,aJ be the sequence of ages we are interested in (typically a1 = 0,a2 =
1, . . ., aJ = 110 or aJ = 120) and γ j, j = 1, . . . ,J are the corresponding (but unob-
served, because of the grouping) expected counts for these ages. What is observed
are the counts y1, . . . ,yn in the n age-groups, which are realizations of Poisson vari-
ates with means E(yi) = µi. The µi are the sum of the γ j that lie in the age-group
represented by the yi, so that the composition matrix C here is rather simple:

C =


1 . . . 1 0 . . . . . . . . . . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
...

...
... 0

. . . 0 0
...

...
0 . . . 0 0 . . . 0 1 . . . 1

 (5)

The number of rows n is the number of observed age-groups, the number of columns
J is the length of the finer age-sequence. Obviously here n < J. Assuming that the
ungrouped distribution γ1, . . . ,γJ is smooth is not restrictive but adding a smoothness
penalty allows to estimate the vector γ . As demonstrated in [4], this approach even
works for wide open age-intervals and can also be used to disaggregate exposure
numbers if rates are to be estimated on a finer age-grid.

3.2 Additive decomposition of death rates

The trajectory of human mortality over age is rather complex, see Figure 1, and
decomposing death rates into additive components has a long tradition. Commonly
three components are used, referring to child mortality, a stretch of elevated mor-
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tality starting in late puberty – the so called accident-hump – and finally senescent
mortality which basically increases exponentially. Particularly the dynamics of the
accident hump has recently attracted attention, but this part is rather complex and
parametric models rarely fit.
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Fig. 1 Age-specific death rates for males in Switzerland in 1980. Data taken from the Human
Mortality Database (www.mortality.org).

In [5] it was demonstrated that a (partially) nonparametric additive decomposi-
tion of death rates can be achieved by a so called sum-of-smooth exponentials (SSE)
model. This model is particularly suited to model trajectories with sharp changes.

The observed data here are the death counts yi and the corresponding exposures ei
across the ages i = 1, . . . ,n (where n = 100 or even 110). The expected values of the
yi are µi = ∑

K
k=1 ei γik, where (γ1k, . . . ,γnk) are the death rates for the K components

(here K = 3). Again the number n is smaller than the number of γik.
The different components γk =(γ1k, . . . ,γnk) here are modeled as γk = exp{Bkβk},

where the matrix Bk holds either a B-spline basis for the smooth components or
expresses a parametric specification, e.g. for the exponentially increasing senescent
component.

The structure of the µi again suggests a PCLM approach. In this problem a
smoothness penalty is not enough to make the decomposition identifiable, however,
adding penalties for shape constraints, such as monotonicity or the accident-hump
component being log-concave, solves the problem. Details can be found in [5]. Fig-
ure 2 shows the resulting estimates from a three-component SSE model for the Swiss
mortality data presented in Figure 2. Here the child and senescent mortality were
modeled by parametric functions and the accident-hump component was specified
to be smooth and being concave on the log-scale.

The model has also be extended to two dimensions so that the change of the
different components over time can be studied.
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Fig. 2 Age-specific death rates for males in Switzerland in 1980. Estimates of the three-component
SSE model.

3.3 Age-at-death distributions in paleodemography

While in modern populations ages-at-death are available from death certificates or,
in earlier centuries, from church registers, we do not have such information if we go
further back in time. In this case age-estimates from excavated skeletons in historical
cemeteries, which can be done by experienced anthropologists, is the only option.
Age-estimates are not necessarily unbiased, but they can be calibrated by using so
called known-age reference collections.

The overall procedure runs in two steps. If we denote the true age-at-death by a
and the estimated skeletal age by s, we can use m skeletons from a reference collec-
tion, for whom we have (ai,si), i = 1, . . . ,m, to estimate the conditional distribution
f (s|a). This is usually done by nonparametric regression to allow for nonlinear and
heteroscedastic relations between a and s.

In the so called target population (the excavated burial site) we only observe the
sekeletal age on n buried individuals. The age-at-death distribution f (a), which is
to be estimated, is related to the distribution g(s) of skeletal ages by

g(s) =
∫

f (s|a) f (a)da . (6)

Information on f (s|a) is borrowed from the reference collection.
If we model both age-scales on a fine grid, i.e., s=(s1, . . . ,sL) and a=(a1, . . . ,aK),

then the observations are the counts of skeletons in each of the L skeletal-age classes:
y1, . . . ,yL, ∑l yl = n. These are realizations of Poisson variates with means µl , where

µl = n
K

∑
k=1

clkγk . (7)
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The clk = P(sl |ak) stem from the reference collection and γk = P(ak). Again this
deconvolution problem has the structure of a PCLM and the unknown age-at-death
distribution γ = (γ1, . . . ,γK) can be estimated by using a simple smoothness penalty.
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