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Abstract One of the current big-data age requirements is the need of representing
groups of data by summaries allowing the minimum loss of information as possible.
Recently, histograms have been used for summarizing numerical variables keeping
more information about the data generation process than characteristic values such
as the mean, the standard deviation, or quantiles. We propose two co-clustering
algorithms for histogram data based on the double k-means algorithm. The first
proposed algorithm, named ”distributional double Kmeans (DDK)”, is an extension
of double Kmeans (DK) proposed to manage usual quantitative data, to histogram
data. The second algorithm, named adaptive distributional double Kmeans (ADDK),
is an extension of DDK with automated variable weighting allowing co-clustering
and feature selection simultaneously.
Abstract Una delle principali esigenze nell’era dei big-data è quella di rappre-
sentare gruppi di dati attraverso strumenti di sintesi che minimizzano la perdita di
informazione. Negli ultimi anni, uno degli strumenti maggiormente utilizzati a tal
scopo è l’istogramma. Esso fornisce una sintesi della distribuzione che genera i
dati risultando più informativo delle classiche sintesi quali la media, la deviazione
standard, o i quantili. Nel presente articolo, si propongono due algoritmi di co-
clustering per dati rappresentati da istogrammi che estendono il classico double k-
means algorithm (DK). La prima proposta chiamata ”distributional double Kmeans
(DDK)”, è un’estensione dell’algoritmo DK a dati ad istogramma. La seconda pro-
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posta, chiamata adaptive distributional double Kmeans (ADDK), è un’estensione
dell’algoritmo DDK che effettua la ponderazione automatica delle variabili consen-
tendo di effettuare simultaneamente il co-clustering e la selezione delle variabili.

Key words: Co-clustering, Histogram data

1 Introduction

Histogram data are becoming very common in several applicative fields. For exam-
ple, in order to preserve the individuals’ privacy, data about groups of customers
transactions are released after being aggregated; in wireless sensor networks, where
the energy limitations constraint the communication of data, the use of suitable syn-
thesis of sensed data are necessary; official statistical institutes collect data about
territorial units or administrations and release them as histograms.

Among the exploratory tools for the analysis of histogram data, this paper fo-
cuses on co-clustering, also known as bi-clustering or block clustering. The aim is
to cluster simultaneously objects and variables of a data set [1, 2, 5, 6].

By performing permutations of rows and columns, the co-clustering algorithms
aim to reorganize the initial data matrix into homogeneous blocks. These blocks also
called co-clusters can therefore be defined as subsets of the data matrix characterized
by a set of observations and a set of features whose elements are similar. They
resume the initial data matrix into a much smaller matrix representing homogeneous
blocks or co-clusters of similar objects and variables. Refs. [4] presents other types
of co-clustering approaches.

This paper proposes at first the DDK (Distributional Double K-means) algorithm
whose aim is to cluster, simultaneously, objects and variables on distributional-
valued data sets. Then, it introduces the ADDK (Adaptive Distributional Double
K-means) algorithm which takes into account the relevance of the variables in the
co-clustering optimization criterion.

Conventional co-clustering methods do not take into account the relevance of the
variables, i.e., these methods consider that all variables are equally important to the
co-clustering task, however, in most applications some variables may be irrelevant
and, among the relevant ones, some may be more or less relevant than others.

ADDK and DDK use, respectively, suitable adaptive and non-adaptive Wasser-
stein distances aiming to compare distributional-valued data during the co-clustering
task.

2 Co-clustering algorithms for distributional-valued data

Let E = {e1, . . . ,eN} be a set of N objects described by a set of P distributional-
valued variables denoted by Yj (1 ≤ j ≤ P). Let Y = {Y1, . . . ,YP} be the set of P
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distributional-valued variables and let

Y =
(
yi j
)

1≤i≤N
1≤ j≤P

be a distributional-valued data matrix of size N ×P where the distributional data
observed on the Yj variable for the i-th object is denoted with yi j. Our aim con-
sists in obtaining a co-clustering of Y, i.e, in obtaining simultaneously a parti-
tion P = {P1, . . . ,PC} of the set of N objects into C clusters and a partition
Q = {Q1, . . . ,QH} of the set of P distributional-valued variables into H clusters.

The co-clustering can be formulated as the search for a good matrix approxima-
tion of the original distributional-valued data matrix Y by a C×H matrix

G =
(
gkh
)

1≤k≤C
1≤h≤H

which can be viewed as a summary of the distributional-valued data matrix Y (see,
for example, Refs. [2, 5, 6]).

Each element gkh of G is also called a prototype of the co-cluster

Ykh =
(
yk j
)

ei∈Pk
Y j∈Qh

Moreover, each gkh is a distributional data, with a distribution function Gkh and a
quantile function Qgkh

In order to obtain a co-clustering that is faithfully representative of the distributional-
valued data set Y, the matrix G of prototypes, the partition P of the objects and the
partition Q of the distributional-valued variables are obtained iteratively by means
of the minimization of an error function JDDK , computed as follows:

JDDK(G,P,Q) =
C

∑
k=1

H

∑
h=1

∑
ei∈Pk

∑
Y j∈Qh

d2
W (yi j,gkh) (1)

where the d2
W function is the non-adaptive (squared) L2 Wasserstein distance com-

puted between the element yi j of the distributional data matrix Y and the prototype
gkh of co-cluster Ykh

In order to propose an adaptive version of the DDK algorithm which evaluates
the relevance of each variable in the co-clustering process, we still propose the local
minimization of the following criterion function:

JADDK(G,Λ ,P,Q) =
C

∑
k=1

H

∑
h=1

∑
ei∈Pk

∑
Y j∈Qh

λ jd2
W (yi j,gkh) (2)

where Λ = (λ j) j=1,...,P (with λ j > 0 and ∏
P
j=1 λ j = 1) are positive weights mea-

suring the importance of each distributional-valued variable.
The minimization of the JDDK criterion, is performed iteratively in three steps:

representation, objects assignments and distributional-valued variables assignments.
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The representation step gives the optimal solution for the computation of the repre-
sentatives (prototypes) of the co-clusters. The objects assignments step provides the
optimal solution for the partition of the objects. Finally, the variables assignments
step provides the optimal solution for the partition of the variables. The three steps
are iterated until the convergence to a stable optimal solution.

The minimization of the JADDK criterion, requires a further weighting step which
provides optimal solutions for the computation of the relevance weights for the
distributional-valued variables.

Representation step in DDK and ADDK

In the representation step, DDK algorithm aims to find, for k = 1, . . . ,C and for
h = 1, . . . ,H, the prototype gkh such that ∑ei∈Pk ∑Y j∈Qh

d2
W (yi j,gkh) is minimal.

According to [3], the quantile function associated with the corresponding proba-
bility density function (pdf ) gkh (1≤ k ≤C;1≤ h≤ H) is:

Qgkh =
∑ei∈Pk ∑Y j∈Qh

Qi j

nknh
(3)

where nk is the cardinality of Pk and nh is the cardinality of Qh.
The ADDK algorithm aims to find, for k = 1, . . . ,C and for h = 1, . . . ,H, proto-

type gkh such that ∑ei∈Pk ∑Y j∈Qh
λ jd2

W (yi j,gkh) is minimal.
Under the constraints ∏

P
j=1 λ j = 1, λ j > 0, the quantile function associated with

the corresponding probability density function (pdf ) gkh (1 ≤ k ≤C;1 ≤ h ≤ H) is
computed as follows:

Qgkh =
∑ei∈Pk ∑Y j∈Qh

λ j Qi j

nk ∑Y j∈Qh
λ j

(4)

Objects assignment step in DDK and ADDK

During the object assignment step of DDK, the matrix of co-cluster prototypes G
and the partition of the distributional-valued variables Q are kept fixed. The error
function JDDK is minimized with respect to the partition P of objects and each
object ei ∈ E is assigned to its nearest co-cluster prototype.

Proposition 1. The error function JDDK (Eq. 1) is minimized with respect to the
partition P of objects when the clusters Pk (k = 1, . . . ,C) are updated according to
the following assignment function:

Pk =

{
ei ∈ E :

H

∑
h=1

∑
Y j∈Qh

d2
W (yi j,gkh) =

C
min
z=1

H

∑
h=1

∑
Y j∈Qh

d2
W (yi j,gzh)

}
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The error function JADDK is minimized with respect to the partition P and each
individual ei ∈ E is assigned to its nearest co-cluster prototype.

Proposition 2. The error function JADDK (Eq. 2) is minimized with respect to the
partition P of objects when the clusters Pk (k = 1, . . . ,C) are updated according to
the following assignment function:

Pk =

{
ei ∈ E :

H

∑
h=1

∑
Y j∈Qh

λ jd2
W (yi j,gkh) =

C
min
z=1

H

∑
h=1

∑
Y j∈Qh

λ jd2
W (yi j,gzh)

}

Variables assignment step in DDK and ADDK

During the variables assignment step of DDK, the matrix of prototypes G and the
partition of the objects P are kept fixed. The error function JDDK is minimized with
respect to the partition Q of the distributional-valued variables and each variable
Yj ∈ Y is assigned to its nearest co-cluster prototype.

Proposition 3. The error function JDDK (Eq. 1) is minimized with respect to the par-
tition Q of the distributional-valued variables when the clusters Qh (h = 1, . . . ,H)
are updated according to the following assignment function:

Qh =

{
Yj ∈ Y :

C

∑
k=1

∑
ei∈Pk

d2
W (yi j,gkh) =

H
min
z=1

C

∑
k=1

∑
ei∈Pk

d2
W (yi j,gkz)

}

where d2
W (yi j,gkz) is the squared L2 Wasserstein distance.

Proposition 4. The error function JADDK (Eq. 2) is minimized with respect to
the partition Q of the distributional-valued variables when the clusters Qh (h =
1, . . . ,H) are updated according to the following assignment function:

Qh =

{
Yj ∈ Y :

C

∑
k=1

∑
ei∈Pk

λ jd2
W (yi j,gkh) =

H
min
z=1

C

∑
k=1

∑
ei∈Pk

λ jd2
W (yi j,gkz)

}

Weighting step for ADDK

We provide an optimal solution for the computation of the relevance weight of each
distributional-valued variable during the weighting step of the ADDK algorithm.

During the weighting step of ADDK, the matrix of prototype vectors G, the par-
tition P of the objects and the partition Q of the distributional-valued variables are
kept fixed. The error function JADDK is minimized with respect to the weights λ j.

Proposition 5. The relevance weights are computed according to the adaptive
squared L2 Wasserstein distance:
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If we assume that ∏
P
j=1 λ j = 1, λ j > 0, the P relevance weights are computed as

follows:

λ j =

{
P
∏

r=1

(
C
∑

k=1

H
∑

h=1
∑

ei∈Pk

∑
Yr∈Qh

d2
W (yir,gkh)

)} 1
P

C
∑

k=1

H
∑

h=1
∑

ei∈Pk

∑
Y j∈Qh

d2
W (yi j,gkh)

(5)

3 Conclusions

In this paper we have introduced two algorithms, based on the double k-means, for
performing the co-clustering of a distributional valued data matrix. The main dif-
ference between the two algorithms is that ADDK integrates in the optimization
criterion the search for a set of weights which measure the relevance of each vari-
able. In order to evaluate the effectiveness of the proposal, we have made some
preliminary test on real and simulated data with encouraging results.

References

1. Govaert G.: Simultaneous clustering of rows and columns. In: Control and Cybernetics 24
pp. 437–458 (1995)

2. Govaert G., Nadif M.: Co-Clustering: Models, Algorithms and Applications. Wiley, New
York (2015)

3. Irpino, A. and Verde, R. Basic statistics for distributional symbolic variables: a new metric-
based approach. In: Advances in Data Analysis and Classification,92, pp. 143–175 Springer
Berlin Heidelberg (2015)

4. Pontes R., Giraldez R., Aguilar-Ruiz J.S.: Biclustering on expression data: A review. In: Jour-
nal of Biomedical Informatics, 57, pp. 163–180, (2015)

5. Rocci R., Vichi M.: Two-mode multi-partitioning. In: Computational Statistics & Data Anal-
ysis, 52 pp.1984–2003 (2008)

6. Vichi M.: Double k-means Clustering for Simultaneous Classification of Objects and Vari-
ables. In: Advances in Classification and Data Analysis. Studies in Classification, Data Anal-
ysis, and Knowledge Organization, pp. 43–52, Springer (2001)


