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Abstract Principal Component Analysis (PCA) is a tool often used for the construction of 
composite indicators even at the local level ([18]). In general, when we are dealing with 
spatial data, the method of PCA, in its classical version, is not appropriate for the synthesis of 
simple indicators. The objective of this paper is to introduce a method to take into account the 
spatial heterogeneity in PCA, extending the contribution introduced by [19]. The proposed 
method will be implemented for the definition of a deprivation index on Italian provinces. 
Abstract L’analisi delle componenti principali (ACP) è uno strumento spesso utilizzato per la 
costruzione di indicatori compositi anche a livello locale ([18]). In generale, quando stiamo 
lavorando su dati spaziali, l’ACP, nella sua versione classica, non è appropriata per la 
sintesi di indicatori semplici. L'obiettivo di questo lavoro è di introdurre un metodo che 
considera l’eterogeneità spaziale nell’ACP, estendendo l’idea di [19]. Il metodo proposto 
sarà implementato per la definizione di un indice di deprivazione nelle province italiane. 
Key words: Simulated annealing, GWPCA, composite indicators, spatial effects. 

1. Introduction 

Principal Component Analysis (PCA, [12]) is a statistical method largely adopted in 
empirical applications. PCA returns a set of independent variables of correlated 
variables by decomposing the eigen-structure of the variance-covariance matrix 
([13]). Typical output of PCA are vectors of loadings corresponding to eigenvectors 
and new sets of coordinates corresponding to components. PCA is a dimension-
reduction tool that can be used to reduce a large set of variables to a small set that 
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still contains most of the information in the large set. It is also used to the aim of 
exploring the data. 

PCA is often applied on geographically distributed data ([3]). Spatial data 
present particular characteristics that should be considered when applying statistical 
technique: spatial dependence and spatial heterogeneity that are the two inherent 
characteristics of spatial data. Spatial dependence can be defined as “the propensity 
for nearby locations to influence each other and to possess similar attributes” ([8]). 
On the other hand, as evidenced by [1], there are two distinct forms of spatial 
heterogeneity: structural instability and heteroscedasticity. Structural instability 
concerns the presence of varying structural parameters over space. 
Heteroscedasticity leads to different error variances of the spatial units.  

In this paper, our main aim is to consider the problem of spatial heterogeneity 
when using PCA for geographically distributed data. In particular, we will address 
the idea that coefficient estimates can vary across space, leading to spatial structural 
instability. As argued by [19], the analysis and the assessment of heterogeneity for 
geographically distributed data is one of the main challenges for the spatial analysts.  
Empirical models that do not take into account for structural heterogeneities may 
show serious misspecification problems ([20]). 

PCA can also be employed to define composite indicators ([17]). The use of 
composite indicators is common in practical analyses because we often meet 
multidimensionality in the real world ([16]).  The loadings of PCA may be used as 
weights in the building of the composite indicators. Some Authors (see, for example, 
[4]) criticize this use of PCA, because the weights from PCA are defined through a 
statistical technique and may not reflect the relevance of the single variable for the 
underlying phenomenon. However, weights from PCA may be less “subjective” 
because these are not assigned by the researcher and are data-driven, differently 
from the case of “normative” weights. See [2]) for a discussion about the methods 
for deriving composite indicators. 

Spatial heterogeneity has been considered in PCA through the approach denoted 
as geographically weighted principal components analysis (GWPCA) ([5]). This 
method allows for differences in the loadings and scores structure due to spatial 
instability. The output of GWPCA is represented by estimates of the covariance 
matrix and sets of components for each locality ([10]). In this way, distinct 
composite indicators are defined differently for each locality. It is clear that the 
interpretation of such a list of different composite indicators at local level is not 
entirely straightforward. 

In this paper, we propose to use a modified version of simulated annealing (SA) 
introduced by [19] to identify zones of local stationarity in the eigenvalues and in 
the corresponding eigenvectors defined by PCA. The presence of the heterogeneity 
is a criterion to divide the sample of observations (i.e. regions) into smaller 
homogeneous groups. Therefore, in our case, we are able to define a composite 
indicator for each partition identified by SA algorithm.  

The use of PCA for deriving composite indicators of deprivation has been 
extensively explored ([18]). Deprivation may be defined “as a state of observable 
and demonstrable disadvantage relative to the local community or the wider society 
or nation to which an individual, family or group belongs” ([21]). Its measurement 
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considers several dimensions from both the social and economic sphere to assess the 
presence of disparities. In this paper, our aim is to define a composite indicator of 
deprivation for group of Italian provinces.  

The layout of the paper is the following. Section 2 is devoted to briefly 
summarize the methodological contribution of the paper. In particular, we review 
the main characteristics of PCA and how SA can be applied to identify zone of local 
stationarity for eigenvalues and eigenvectors. Section 3 contains the description of 
our data set and shows the results of the composite indicator for Italian provinces. 
Finally, section 4 concludes.  

2. The methodology 

PCA is based on the analysis of a matrix 𝐗!"  where 𝑖 = 1,… , 𝑛 denotes the 
statistical units and 𝑗 = 1,… ,𝑚 the variables, respectively. The central idea of PCA 
is the representation of units in 𝑞-dimensional subspaces (with 𝑞 < 𝑚) retaining the 
maximum of statistical information. The reduction of data dimensionality allows us 
easier interpretative analysis.  A primary result in PCA is ([13]):  

 
𝐀𝚲𝐀! = 𝚺 (1) 
 

where 𝚲 is the diagonal matrix of eigenvalues, 𝐀 is the corresponding matrix of 
loadings (i.e., the eigenvectors), and 𝚺 is the variance/covariance matrix. The 
eigenvalues in 𝚲 represent the variance of the principal component, 𝐘! defined as: 

 
𝐘! = 𝐗𝐚! (2) 
 

where 𝐚! is the 𝑗-th column of the loading matrix 𝐀 of 𝚺 and represents the 
contribution of each variable in 𝐗 to the 𝑗-th principal component 𝐘!. 

In practice, the component scores related to components 𝑞 +  1 to 𝑚  represent 
the Euclidean distances alongside the axes of the corresponding orthogonal vectors 
to a q-dimensional linear subspace. The first q loadings are chosen so that this 
subspace contains the highest proportion of the total variance of the data points. In 
essence, PCA seeks a linear combination of variables such that the maximum 
variance is extracted from the variables. The first 𝑞 components are described by: 

 
𝐘 = 𝐗𝐀! (3) 
 

where 𝐘 is the score matrix, 𝐀! is the loading matrix with the only 𝑞 columns of 𝐀. 
[13] demonstrates that the best (least squares) rank 𝑞 approximation to 𝐗 is 𝐗𝐀!𝐀!!  
and the residual matrix 𝐒 can be defined as: 

 
𝐒 = 𝐗 − 𝐗𝐀!𝐀!! = 𝐗𝐀!!𝐀!!!  (4) 
 

where 𝐀!! is the loading matrix with the first 𝑞 columns removed. In the case of 
application of PCA to spatially distributed data, the underlying implicit hypothesis is 
that the variance and covariance structure of the process is constant throughout the 
geographical area under investigation. This assumption is obviously not realistic 
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([10]). Therefore, it is necessary to relax this hypothesis, to consider in some way 
the spatial effects in the definition of the principal components. 

A first appropriate technique for PCA for spatial data is represented by 
Geographically Weighted Principal Component Analysis, (GWPCA, [5], [9]). The 
equation (1) can be generalized to the case of GWPCA as ([10]): 

 
𝐀(𝑢𝒊, 𝑣𝒊)𝚲(𝑢𝒊, 𝑣𝒊)𝐀(𝑢𝒊, 𝑣𝒊)! = 𝚺(𝑢𝒊, 𝑣𝒊) (5) 
 

where 𝚲(𝑢𝒊, 𝑣𝒊) is the diagonal matrix of local eigenvalues, 𝐀(𝑢𝒊, 𝑣𝒊) is the 
corresponding matrix of local eigenvectors, 𝚺 𝑢𝒊, 𝑣𝒊  is the local variance-
covariance matrix, and 𝑢𝒊, 𝑣𝒊  are the coordinates of spatial unit 𝑖.  

The output of GWPCA consists in different loadings and component scores 
defined for each spatial unit. In practice, GWPCA defines completely different 
index for each spatial unit as function of distinct loadings. This produces remarkable 
difficulties in the interpretation of the results.  

To simplify the reading of the phenomena, in this paper we propose to apply 
simulated annealing (SA) algorithm to PCA to identify groups of spatial units that 
are supposed to share the same eigenvectors (i.e., the same composite indicators). 
This approach was introduced by [19] and improved by [20] for the analysis of 
economic growth.  The main idea of this framework is that the appropriate treatment 
of spatial heterogeneity is substantially equivalent to partition an area in groups of 
geographical zones not necessarily conterminous that have similar component 
scores. Following this methodology, the output is not represented by different 
loadings for each spatial unit as in the case of GWPCA, but distinct loadings for 
every groups of regions identified by SA.  

SA is a stochastic relaxation algorithm that was originally introduced in 
statistical mechanics by [15] and [14]. [7] observes that a spatial combinatorial 
optimization problem might be described through a Markov Random Field (MRF). 
The probability measure of a MRF using Gibbs distribution is defined through the 
energy function 𝑈(𝐗,𝐤), that represent in our algorithm the objective function to be 
minimized, and a control parameter, 𝑇 (see [6]; [19]). 𝑈 𝐗,𝐤  depends on observed 
data 𝐗, and the label vector 𝐤 = 𝑘!, 𝑘!,… , 𝑘! ,… , 𝑘! , which categorizes the 
heterogeneous zones, identifying clusters of regions.  𝑈 𝐗,𝐤  is defined by 
considering two different effects: a measure of the goodness of fit of the model, and 
a proximity constraint that describes the extent of aggregation of the spatial units. In 
particular, at the 𝑙-th iteration of the procedure, the energy function is defined as: 

 
𝑈 𝐗,𝐤 = 𝛽 𝐼!!

!!! − (1 − 𝛽) 𝐜!"𝟏(! ! !!! ! !)
!
!!!

!
!!!  (6) 

 
where the first part in the right-hand-side is the interaction term, with 𝐼! =

𝑠!!
!
!!!!! , with 𝑠! the entry of the matrix of the residual matrix 𝐒 defined by 

equation (4); while the second one is the penalty term defined through a Potts model 
(see [19]). Specifically, 𝐜!" is the element (𝑟, 𝑠) of a binary contiguity matrix, 
𝟏(! ! !!! ! !) is the indicator function of the event and 𝑘 𝑗 ! = 𝑘 𝑗 !, and (1 − 𝛽) is 
a parameter that discourages configurations with not conterminous units. The 
parameter (1 − 𝛽) is chosen by the researcher and models the importance of the 
proximity of the spatial units. Note that the two parts of the energy function (6) are 



Spatial heterogeneity in principal component analysis   

5 

balanced with complementary weight.  At the initial value of control parameter 𝑇!, 
each unit 𝑖, is randomly classified as 𝑘!,!, where 𝑘!,! ∈ 1,2,… ,𝐾  with 𝐾 is the 
number of clusters. This step defines the initial configuration 𝑆!. At the (𝑙 + 1)-th 
iteration, given a current configuration 𝑆!, a different configuration 𝑆! ≠ 𝑆!!! is 
randomly chosen, defining a new energy function 𝑈(𝑆!!!) the is compared with the 
previous one 𝑈(𝑆!). The old configuration 𝑆! is substituted by the new 𝑆!!! in 
accordance to the probability: 

 

𝑃𝑟!,!!! = 𝑚𝑎𝑥 1, 𝑒𝑥𝑝 − !(!!!!)!!(!!)
!!

 (7) 
 

It is worth noting that probability (7) allows to avoid entrapments in local minimum, 
by defining positive probability for the change of configuration also when the 
objective function 𝑈(𝑆) increases. In essence, more likely patterns (i.e. 
configurations with lower states of energy) are always accepted, but it is also 
possible to accept also poorer configurations. 

3. Empirical evidence 

The proposed methodology is applied to define a deprivation index for Italian 
provinces. Data set derive from the 15th Population and Housing Census (2011) by 
Italian National Statistical Institute. 

In this paper, a set of ten variables is adopted to build an area-based indicator of 
material deprivation. The choice of variables has been carried on according to the 
definition of deprivation index by [17] that suggest choosing a small set of variables 
able to capture socio-economic deprivation and assist policy makers in a wide set of 
decisions, for example, public health and tracking inequalities. The variables cover 
both economic and social domains. Income, educational attainment (proportion of 
people without high school diploma, School), and employment (Empl) are 
considered together with social conditions, as the proportion of people living alone 
(Unip), the percentage of separated, widowed, or divorced people (SVD), and the 
proportion of single parent families living in each area (Sin_Par). Furthermore, to 
have a better definition of the deprivation, we include other indicators, and use some 
of the variables proposed by [11] to assess the level of material deprivation: lack of 
car possession among resident families (Car), percentage of families living in house 
of property (Hou), and available surface in residence houses per person (Sqm) are 
added to assess the level of material deprivation. Moreover, the percentage of 
foreigners living in the Province (Frg) is considered as an additional variable, 
particularly to evaluate situation of social exclusion. 

PCA is performed on Italian provinces and four components are selected which 
capture 80% of the variance in the data set. In Table 1, the loadings of the first four 
components are reported. 

The eigenvector corresponding to the first component is characterized by a 
dominance of the economic variables: employment, income, and house dimension. 
These are negatively correlated to deprivation. Lack of car possession is positively 
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linked to deprivation, displaying that owning a car decreases the level of material 
deprivation. On the other side, social variables tend to be lower in magnitude. In the 
second component, the picture is substantially different with social variables higher 
in magnitude, and negatively correlated to the deprivation level. Interestingly, the 
percentage of foreign people reverses its sign, being negative in the first component 
and positive in the second.  

 
Table 1: Loadings for first 4 components of global PCA. 

  PC 1 PC 2 PC 3 PC 4 
Empl -0.500 0.087 -0.101 0.141 
Income -0.307 0.245 -0.316 -0.062 
School 0.110 -0.187 0.083 0.879 
Sin_Par -0.125 -0.602 0.027 -0.230 
SVD -0.161 -0.595 -0.100 -0.193 
Unip -0.294 -0.285 -0.428 0.273 
Car 0.386 -0.156 -0.375 0.123 
Frg -0.440 0.238 -0.119 0.105 
Hou -0.153 -0.106 0.686 0.114 
Sqm -0.387 -0.085 0.253 0.024 

     Eigenvalues 1.84 1.50 1.20 1.01 
Proportion of variance 0.34 0.22 0.14 0.10 
Cumulative variance 0.34 0.56 0.70 0.80 

 
In standard PCA, homogeneity across space is assumed, and the same set of 
loadings may be used to derive an indicator of deprivation for the whole Country. 
Nevertheless, spatial heterogeneity could characterize the structure of the variance-
covariance matrix. Therefore, the hypothesis of spatial homogeneity could be 
relaxed, allowing loadings to change according to different spatial configurations.  

To avoid potential drawbacks of spatial heterogeneity in PCA, SA is adopted for 
identifying clusters of spatial units.  

In this paper we identify three different clusters, and this spatial configuration is 
considered for further analysis. The selected combination produces an improvement 
in the proportion of explained variance when compared to the standard PCA.  
Finally, a level of (1 − 𝛽)=0.3 is chosen, and 4 components are retained for all 
configurations. 

In Figure 1, the groups are mapped, where white denotes the first cluster, light 
grey the second group, and dark grey the third regime. 

The first group (i.e., white) is mainly composed by provinces in the North-East 
of the Peninsula and some part of Tuscany.  Provinces closer to Alps and the Centre 
- especially in the Apennine mountains - compose the second groups (i.e., light 
gray), while the third regime (i.e., dark grey) characterizes mostly the Southern part 
of the Country and few Provinces of the North (e.g. Turin). 

As expected, the three clusters show substantial differences in terms of their 
indicators structures. The eigenvectors of the first component of the three groups are 
shown in Table 2. Particularly interesting is the impact of the social variables. While 
in the first group social variables contribute positively to the level of deprivation, in 
the other spatial clusters the effects (i.e., Sin_Par, SVD, Unip) on the deprivation is 
negative. Other significant differences in the loadings structure can be found in the 
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heterogeneous effect on deprivation of school attainment and the different 
magnitude of employment in the diverse regimes. 

 
Figure 1: Clusters of spatial units obtained by Simulated Annealing. 

 
 

 
Table 2: Loadings of first component for each group obtained from Simulated Annealing.  

 Group 1 Group 2 Group 3 
Empl -0.318 -0.462 -0.360 
Income -0.293 -0.378 -0.007 
School 0.283 0.192 0.037 
Sin_Par 0.429 -0.245 -0.365 
SVD 0.432 -0.300 -0.379 
Unip 0.243 -0.349 -0.415 
Car 0.380 0.330 0.236 
Frg -0.366 -0.351 -0.280 
Hou -0.081 0.240 -0.320 
Sqm -0.135 -0.211 -0.429 
    Proportion of Variance 0.40 0.35 0.39 

4. Conclusion 

In this paper we propose a method for considering spatial heterogeneity in PCA. In 
fact, when dealing with geographically distributed data, the application of the 
classical framework of PCA could be misleading and lead to incorrect results.  To 
overcome this drawback, the proposed method extends to PCA, the SA algorithm 
introduced by [19] for analyzing regional economic growth. 

Applying SA to PCA let to highlight different structures of the multivariate 
phenomenon taking into account the presence of spatial heterogeneity. Results show 
the differences in the computing the composite indicator in each cluster. Especially 
the effect of social variables varies from first to second and third groups and a 
substantial difference of the North provinces with the rest of the Country is highly 
evident. However, results of SA help policy maker in the interpretation of the global 
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phenomenon, improving interpretability of the indicator levels while considering 
different spatial regimes.  
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