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Abstract Filtering hidden Markov models is analytically tractable only for a hand-
ful of models (e.g. Baum-Welch and Kalman filters). Recently, Papaspiliopoulos
& Ruggiero (2014) proposed another analytical approach exploiting a duality rela-
tion between the hidden process and an auxiliary process, called dual and related
to the time reversal of the former. With this approach, the filtering distributions are
obtained as a recursive series of finite mixtures. Here, we study the computational
effort required to implement this strategy in the case of two hidden Markov models,
the Cox-Ingersoll-Ross process and the K-dimensional Wright-Fisher process, and
examine several natural and very efficient approximation strategies.
Abstract Il filtraggio dei modelli di Markov nascosti è un problema trattabile ana-
liticamente solo per un numero limitato di modelli (p.es. i filtri di Baum-Welch e
Kalman). Papaspiliopoulos & Ruggiero (2014) hanno proposto un nuovo approc-
cio che sfrutta una relazione di dualità tra il processo nascosto ed un processo
ausiliario, detto duale e legato alla reversibilità del segnale. Con questo approccio
la soluzione del problema di filtraggio assume la forma di una mistura finita va-
lutata mediante una ricorsione. Qui studieremo il costo computazionale richiesto
per implementare tale strategia nel caso di due modelli di Markov nascosti, i cui
segnali evolvono come un processo di Cox-Ingersoll-Ross e come una diffusione K-
dimensionale di Wright-Fisher; analizzeremo diverse strategie di approssimazione.
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1 Introduction to optimal filtering using a dual process

Consider a hidden stochastic process and some noisy observations of this process.
As new data arrives, obtaining the distribution for the last hidden state given all
the values observed previously is called filtering the hidden process. Let the se-
ries {Yk,0 ≥ k ≥ n} be the sequence of observations, denoted Y0:n for Y ∈ Y , and
let the Markov chain {Xk,0 ≥ k ≥ n}, similarly denoted X0:n, be the unobserved
stochastic process. We assume X0:n to be the discrete-time sampling of a homoge-
neous continuous-time Markov process Xt . We also assume that Xt has state-space
X , transition kernel Pt(x,dx′) and initial distribution ν(dx). The observations re-
late to the hidden signal by means of conditional distributions assumed to be given
by the kernel F(x,dy) and we let F(x,dy) = fx(y)µ(dy) for some measure µ(dy).
The filtering distributions, which are the target of inference, are L (Xn|Y0:n), de-
noted νn(dx). Define now an update and prediction operator acting on probability
measures ν :

update: φy(ν)(dx) =
fx(y)ν(dx)

pν(y)
, with pν(y) =

∫
χ

fx(y)ν(dx) (1)

prediction: ψt(ν)(dx′) =
∫

χ

ν(dx)Pt(x,dx′) (2)

Then, the filtering distributions can be obtained by repeated applications of the
update and prediction operators, as the recursion: ν0 = φY0(ν) and ∀n > 0,νn =
φYn(ψtn−tt−1(νn−1)) (see for instance [1]). An explicit solution to the filtering prob-
lem is seldom available, except in two notorious cases: unobserved Markov chains
with a discrete state-space, and Gaussian unobserved Markov chains with Gaus-
sian conditional distribution. [2] extended the class of models for which an ex-
plicit solution is available by exploiting a duality relation between the unobserved
Markov chain and a pure death stochastic process. In order to describe this, as-
sume that Θt is a deterministic process and that r : Θ →Θ is such that the differ-
ential equation: dΘt/dt = r(Θt) with Θ0 = θ0 has a unique solution for all θ0. Let
λ : Z+→ R+ be an increasing function, ρ : Θ → R+ be a continuous function, and
consider a two-component Markov process (Mt ,Θt) with state-space M ×Θ , where
Θt evolves autonomously according to the previous differential equation, and when
at (Mt ,Θt) = (m,θ), the process jumps down to state (m−e j,θ) with instantaneous
rate λ (|m|)ρ(θ)m j. We say that (Mt ,Θt) is dual to Xt with respect to a family of
functions h, e.g.

Ex [h(Xt ,m,θ)] = Em,θ [h(x,Mt ,Θt)] , ∀x ∈ χ,m ∈M ,θ ∈Θ , t ≥ 0.

where Ex [ f (Xt)] = E [ f (Xt)|X0 = x] =
∫

χ
f (x′)Pt(x,dx′) and the duality functions

are such that h : χ×M ×Θ → R+, Θ ⊆ Rl . The dual process (Mt ,Θt) is separated
into a deterministic component Θt and a pure death process Mt , whose rates are
subordinated to the deterministic process. The transition probabilities of the dual
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process are denoted pm,n(t,θ) = P [Mt = n|M0 = m,Θ0 = θ ] ,∀ n,m ∈M 2,n≤m.
The duality property is key to the computability of the filters, as it allows to replace
the expectation with respect to realisations of the original stochastic process in the
prediction operation (Eq. (2)) by an expectation over realisations of the pure death
component of the dual process, which involves finite sums.

The transition probabilities can be found by exploiting the duality relation ([2]):

pm,m−i(t,θ) = γ|m|,|i|C|m|,|m|−|i|(t)p(i;m, |i|) (3)

with:

γ|m|,|i|=

(
|i|−1

∏
h=0

λ|m|−h

)
, and C|m|,|m|−|i|(t)= (−1)|i|

|i|

∑
k=0

e−λ|m|−kt

∏0≤h≤|i|,h 6=k(λ|m|−k−λ|m|−h)

(4)

and p(i;m, |i|) is the hypergeometric probability mass function.
We also define the following notion of conjugacy, by assuming that F0 =

{h(x,m,θ)π(dx), m ∈M ,θ ∈ Θ} is a family of probability measures such that
there exist functions t : Y ×M →M and T : Y ×Θ→ Θ with m→ t(y,m) in-
creasing and such that φy(h(x,m,θ)π(dx)) = h(x, t(y,m),T (y,θ))π(dx). The filter-
ing algorithm proposed in [2] can be summarised by the two following relations.
For the family of finite mixtures F̄ {∑m∈Λ wmh(x,m,θ)π(dx) : Λ ⊂M , |Λ |< ∞,

∑m∈Λ wm = 1}, the update operation acts as:

φy

(
∑

m∈Λ

wmh(x,m,θ)π(dx)

)
= ∑

n∈t(y,Λ)

ŵmh(x,n,T (y,θ))π(dx) (5)

with t(y,Λ) = {n : n = t(y,m),m ∈Λ}, and ŵm ∝ wm and for n = t(y,m),
∑n∈t(y,Λ) ŵn = 1. This updates the signal given the new data by means of the Bayes
theorem. The prediction operation acts as:

ψt

(
∑

m∈Λ

wmh(x,m,θ)π(dx)

)
= ∑

n∈G(Λ)

(
∑

m∈Λ ,m≥n
wm pm,n(t,θ)

)
h(x,n,θt)π(dx)

(6)

where G(Λ) = {n ∈M : n ≤ m,m ∈ Λ}, propagating the current filtering distri-
bution by means of the signal transition kernel. As such, filtering a hidden Markov
model using the duality relation consists in recursive operations on finite mixtures
of distributions, where the number of components remains finite and the compo-
nents remain within the same family of distributions. At each new observation, the
mixture distribution is shifted towards the data, then until the next observation, the
mixture progressively forgets the past information and drifts back towards the prior
distribution.
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2 Implementation of the dual filtering algorithm

The filtering algorithm resulting from the method presented above is similar to the
Baum-Welch filter and it alternates update and prediction steps. The update step
shifts each component and modifies its weight, while the prediction step lets all the
components propagate some of their mass towards the components close to the prior.
We illustrate this dual filtering algorithm (Eq. (1)) for two stochastic processes:
the Cox-Ingersoll-Ross (CIR) process and the Wright-Fisher (WF), presented in
full details later. For these two models, the number of mixture components in the
filtering distributions evolves as |Λn| = ∏

K
i=1(m0,i + 1 + ∑

n
i=1 Yi), where K is the

dimension of the latent space and m0 = m0,1:K is the initial state.
The prediction step is much costlier than the update step, as at each iteration it

involves computing the transitions from all elements of Λi to those reachable by a
pure death process in G(Λi) . It is possible to contain the cost of the prediction oper-
ation by storing the transition terms pm,n, which will be used multiple times during
the successive iterations. However, the rapid growth in the number of those terms
(proportional to |G(Λn)|2) does not permit saving all of them in memory. Yet, the
pm,n are themselves a product of a number of terms which grows only quadratically
with the sum of all observations and can be saved (Eq. (4) and the hypergeomet-
ric coefficients expressed as a product of binomials coefficients). Another technical
difficulty is that the sum with terms of alternated sign in (4) is susceptible to both
over and underflow. We compute it using the Nemo library for arbitrary precision
computation ([3]).

Although considerable efficiency gains are achieved by storing the transition
terms, further improvements may be obtained by a natural approximation of the
filtering distributions. Indeed, the filtering distributions contain a number of com-
ponents that grows quickly as new observations arrive, but the complexity of the
hidden signal does not necessarily increase accordingly. Hence, if the prior is rea-
sonable and the posteriors appropriately concentrated, there is no reason for the
number of components with non negligible weight to explode. Indeed, simulation
studies show that the number of components representing 99% of the weight of
the mixture saturates as new observations arrive (Eq. (2)). This suggests that some
components may be deleted from the mixtures, speeding the computations, with-
out loosing much in terms of precision. We envision three strategies for pruning the
mixtures:

• prune all the components who have a weight below a certain threshold, which is
an attempt at controlling the approximation error at a given step. This approach
will be referred to as the fixed threshold strategy.
• retain only a given number of components, hopefully chosen above the satu-

ration number (see Eq. (2)). This is an attempt at controlling the computation
budget at each time step. This approach will be referred to as the fixed number
strategy.
• retain all the largest components needed to reach a certain amount of mass,

for instance 99%. This is an adaptive strategy to keep the smallest possible
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number of components under a certain error tolerance level. This approach will
be referred to as the fixed fraction strategy.

In Algorithm 1, the pruning is performed just after the update step. This choice
is dictated by two reasons: first, after the update step the mixture should be more
concentrated because information from the new observation was just incorporated,
leading to a smaller number of components with non negligible weight. Then, as
the prediction step is the most computationally expensive, reducing the number of
components before predicting entails the maximum computational gain. After prun-
ing, we renormalise all the remaining weights so that they sum to 1. As the pruning
operation occurs at each time step, the level of approximation on a given filtering
distribution results from several successive approximations.

Algorithm 1: Optimal filtering algorithm using the dual process, with the op-
tion of pruning.

Data: Y0:n, t0:n and ν = h(x,m0,θ0) ∈F for some m0 ∈M ,θ0 ∈Θ

Result: Θ0:n, Λ0:n and W0:n with Wi = {wi
m,m ∈Λi}

Initialise
Set Θ0 = θ0
Set Λ0 = {t(Y0,m0)}= {m∗} and W0 = {1} with t as in (5)
Let Θ0 evolve during t1− t0 and set θ ∗ equal to the new value
Set Λ ∗ = G(Λ0) and W ∗ = {pm∗,n(t1− t0,θ0),n ∈Λ ∗} with G as in (6) and pm,n as in

(3)
for i from 1 to n do

Update
Set Θi = θ ∗

Set Λi = {t(Yi,m),m ∈Λ ∗}
Set Wi = {

w∗m ph(x,m,Θi)

∑n∈Λ∗ w∗n ph(x,n,Θi)
,m ∈Λ ∗} with ph(x,m,θ) defined as in (1)

if pruning then
Prune(Λi) and remove the corresponding weights in Wi
Normalise the weights in Wi

Predict
Let Θi evolve during ti+1− ti and set θ ∗ equal to the new value

Set Λ ∗ = G(Λi) and W ∗ =

{
∑

m∈Λi,m≥n
wi

m pm,n(ti+1− ti,Θi),n ∈Λ
∗

}
end

3 Filtering two stochastic processes

For illustration we consider two stochastic processes, a 1-dimensional Cox-Ingersoll-
Ross process and a 3-dimensional Wright-Fisher process, which we filter using the
strategy outlined above. The dimension of the state space of the pure death process is
dependent on the dimension of the signal, therefore the number of components in the
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filtering distributions for the WF process is much greater than for the CIR process,
rendering the inference computationally more challenging. The one-dimensional
CIR process has the following generator: A = (δσ2 − 2γx) d

dx + 2σ2x d2

dx2 . with
δ ,γ,σ > 0 and stationary distribution Ga(δ/2,γ/σ2). A conjugate emission den-
sity is: Yt |Xt ∼ Po(Xt). The duality function can be found in [2]. We simulate a
CIR process starting from X = 3 with δ = 3.6, γ = 2.08, σ = 2.8. which corre-
sponds to a stationary distribution Gamma(1.8,0.38). Furthermore, we simulate 10
observations at each time, with 200 time steps separated by 0.011 seconds. For the
inference, we use as a prior for the stationary distribution a Gamma(1.5,0.15625)
which corresponds to γ = 2.5, δ = 3., σ = 4. and m0 = 0.

The Wright-Fisher model is a K-dimensional diffusion, whose generator is A =
1
2 ∑

K
i=1(αi−|α|x j)

∂

∂xi
+ 1

2 ∑
K
i, j=1 xi(δi j−x j)

∂ 2

∂xi∂x j
. and its stationary distribution is a

Dirichlet(α). A conjugate emission density is: fx(Y ) = ∏
J
i=1

(
|ni|!∏

K
k=1

x
nki
k

nki!

)
. The

duality function can also be found in [2]. We simulate two datasets using a discrete
time and finite population Wright-Fisher model of dimension K = 3 initialised at
random from a Dirichlet(0.3,0.3,0.3) with α = (0.75,0.75,0.75) and a population
size of 50000. 15 observations are collected at each observation time. There are
10 observation times with a time step of 0.1 second for the first dataset and 20
observation times with a time step of 0.004 second for the second dataset. As a
prior, we use a uniform distribution Dirichlet(1,1,1). The two different time steps
for the WF model are intended to explore two regimes, one for which the time
between observations is large, such that information from previous data is almost
forgotten (the predictive distribution has almost moved back to the prior) and one
for which that time is very short. In these two regimes, the number of components
with non negligible weights is expected to be very different. Notably, in the second
regime the impact of the successive approximations is expected to be stronger. Fig.
1 shows that in all the studied cases, the filtering distributions are centred around
the signal. For the WF model with the short time step, the filtering distributions do
not evolve fast enough to follow the signal exactly, but this is to be expected given
the rapid rate at which new observations arrive. Considering how the weights are
distributed among the components of the filtering distribution, we observe that the
mass is mostly concentrated on a number of components several orders of magnitude
smaller than the total number of components. This observation suggests that many
components may be deleted with a minimal loss of precision.

To quantify this loss of precision by pruning, we compute the Hellinger dis-
tance between the exact and the approximate filtering distributions obtained by
pruning: dH( f1, f2) =

1
2
∫

χ
(
√

f1−
√

f2)
2. As there is one filtering distribution per

observation time, to compare two sets of filtering distributions we consider the
maximum over time of the distance between the distributions at each time, i.e.
supn(dH(νn,exact,νn,approx)). The numerical evaluation of the distances is done us-
ing standard quadrature and simplicial cubature rules from the R package
SimplicialCubature. Parallel to the loss of precision due to the approxima-
tion, we consider the gain in efficiency by measuring the computing time needed

6



0

10

20

30

0.0 0.5 1.0 1.5 2.0

Time

x

● ●
●●

● ● ●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●● ●

x1 x2 x3

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Time

F
ra

ct
io

n

●

●

●
●

● ●

●

●
●

●

●

●

● ●
●

●

●
●

●

● ● ●● ●● ●
●

●● ●
●

●● ● ●●
●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

● ●
●

●

●●

●

●

x1 x2 x3

0.00 0.02 0.04 0.06 0.080.00 0.02 0.04 0.06 0.080.00 0.02 0.04 0.06 0.08
0.00

0.25

0.50

0.75

1.00

Time

F
ra

ct
io

n

Fig. 1: Hidden signal, data and
95% credible intervals of the
filtering distribution for the
three datasets. The hidden sig-
nal is denoted by the blue
line, the data by the black
dots and the credible bands
by the red dashed lines. Top:
CIR, centre: WF, bottom: WF
with short time step. For the
WF model, each panel corre-
sponds to one marginal, and
the data plotted is the propor-
tion of the 15 multinomial ob-
servations which are from the
corresponding type.
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Fig. 2: Number of components (in log scale) in the filtering distributions as a func-
tion of the iteration number. Left: CIR, centre: WF, right: WF with short time step.
The blue line denotes the total number of components in the filtering distributions,
the green line denotes the number of components carrying 99% of the mass and the
red 95%.

to filter the whole dataset. Fig. 3 shows that the approximation strategies afford a
reduction in computing time by 5 orders of magnitude for the CIR process, or by 2
to 3 orders of magnitude for the three-dimensional WF process. The fixed fraction
strategy is noticeably slower in the case of the WF process with the shorter time
step because the mass is spread over more components, as was also apparent on
Fig. 2. For all strategies and all processes, it seems possible to find a compromise
between accuracy and computing time where increasing the computational effort
starts yielding diminishing returns. Except in the case of the CIR model where the
fixed threshold strategy seems to slightly outperform the others, no strategy seems
to offer a fundamentally better precision/cost ratio than the others.
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Fig. 3: Approximation error versus computational effort. The computation time is
given relative to the time needed for obtaining the exact filtering distributions. The
top level represents the CIR process, the middle represents the WF process and
the bottom represents the WF process with the shorter time step. Fixed fractions
tested are 0.8, 0.9, 0.95, 0.99, 0.999. The fixed numbers tested are 5, 10, 25 for the
CIR process, 10, 25, 50, 100, 200, 400 for the WF processes. The fixed thresholds
are 0.01, 0.005, 0.001, 0.0005, 0.0001 for the CIR orocess and 0.01, 0.005, 0.001,
0.0001 for the WF processes.

The results presented here are a preliminary study on the computational costs
of filtering strategies based on duality. A more thorough investigation of these and
other aspects involved in this type of filtering are currently ongoing work.
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