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Abstract Earthquakes do not occur randomly in space and time; rather, they tend
to group into clusters that can be classified according to their different proper-
ties, presumably related to the specific geophysical properties of a seismic region.
Two methods for detection of earthquake clusters are considered in order to take
advantage of different descriptions of the seismic process and assess consistency
with the obtained clusters: the former is based on “nearest-neighbor distances” be-
tween events in space-time-energy domain; the latter is a stochastic method based
on a branching point process, named Epidemic-Type Aftershock-Sequence (ETAS)
model, which provides different plausible clustering scenarios by simulation. Both
methods allow for a robust data-driven identification of seismic clusters, and per-
mit to disclose possible complex features in the internal structure of the identified
clusters. We aim at exploring the spatio-temporal features of earthquake clusters in
Northeastern Italy, an area recently affected by low-to-moderate magnitude events,
despite its high seismic hazard attested by historical destructive earthquakes.

Abstract I terremoti non avvengono in modo casuale nello spazio-tempo, tendono
piuttosto a raggrupparsi in cluster che possono essere classificati secondo le loro
diverse proprietà, verosimilmente legate alle specifiche proprietà geofisiche della
regione dove essi accadono. Due metodi per l’individuazione di cluster di terremoti
sono stati presi in esame al fine di benificiare di descrizioni diverse del processo
sismico e valutare la coerenza dei cluster ottenuti: il primo è un metodo basato
sulla distanza “nearest-neighbor” tra coppie di eventi nel dominio spazio-tempo-
energia; il secondo è un metodo stocastico basato su un modello di processi di punto
di tipo branching noto come modello ETAS (Epidemic-Type Aftershock-Sequence)
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che, attraverso tecniche di simulazione, è in grado di fornire diversi scenari plau-
sibili di raggruppamento in clusters. Entrambe i metodi consentono una identifi-
cazione robusta dei cluster sismici, fondamentalmente guidata dai dati, e permet-
tono di studiare la complessità nella struttura interna dei cluster stessi. Analizziamo
le caratteristiche spazio-temporali dei cluster di terremoti avvenuti nell’Italia nord-
orientale, un’area ad alta pericolosità sismica, come attestato da alcuni forti terre-
moti storici, e con una sismicità di magnitudo medio-bassa negli ultimi decenni.

Key words: earthquake clustering, simulation, stochastic declustering, ETAS model,
nearest-neighbor distance

1 Some methods for earthquake clustering

Earthquake clustering is a prominent feature of seismic catalogs, both in time and
space. Several methodologies for earthquake cluster identification have been pro-
posed in the literature with at least a twofold scope: (1) characterization of the
clustering features and their possible relation to physical properties of the crust;
(2) declustering of earthquake catalogs which, by removing events temporally
and spatially dependent on the mainshocks, allows for spatio-temporal analysis of
the background (independent) seismicity. Nevertheless the application of different
(de)clustering methods may lead to diverse classifications of earthquakes into main
events and secondary events; consequently, the definition of mainshock is not uni-
vocal, but strictly related to the different physical/statistical assumptions underlying
each method. Therefore we consider different declustering techniques to investigate
classification similarities which might provide strong support for some clustering
features, and classification differences which might highlight strength and lack of
the clustering methods. Two clustering techniques are applied: the nearest-neighbor
approach (Zaliapin and Ben-Zion, 2013) and the stochastic declustering approach
(Zhuang et al., 2004). Both methods can be satisfactorily applied to decompose the
seismic catalog into background seismicity and individual sequences (clusters) of
earthquakes; moreover, they are data-driven and allow studying the internal struc-
ture of the clusters.

1.1 Nearest-neighbor method (NN)

Bak et al. [2] show that the waiting times between earthquakes in California follow
a unified scaling law valid at different time scales (from tens of seconds to tens of
years), by varying the magnitude threshold M and the linear size L of the studied
area. The unified scaling law is obtained by rescaling the distribution F(t) of the
waiting times in such a way that t is replaced by t10−bMLd f and F(t) by tα F(t). Pa-
rameters α , b, and d f correspond to empirical power laws which establish general
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relations among frequency, waiting times, magnitude, and epicentre locations of the
earthquakes: α is the interval exponent of the Omori-Utsu law, b is the b-value of
the Gutenberg-Richter distribution of the magnitude, and d f is the spatial fractal di-
mension of the epicentre distribution. Thus the unified scaling law is a combination
of scale invariant power functions that can be interpreted as statistical evidence of
the self-organized critical behaviour of the earth dynamics, which results into a hi-
erarchical organization of earthquakes in time, space, and magnitude. Based on this
concept [1], the nearest-neighbor distance between two events in the space-time-
energy domain is defined by:

ηi j = ti j(ri j)
d f 10−bMi , (1)

where ti j denotes the inter-occurrence time between events i and j (i < j), ri j is the
spatial distance between their epicentres, Mi is the magnitude of i-th event. Event i∗

is the nearest-neighbor of event j if i∗ = argmin{i:i< j}ηi j; in other words, event j is
an offspring of event i∗, and also i∗ is the parent of j.

By connecting each event with its nearest-neighbor, one obtains a time-oriented
tree where each event has a unique parent and may have multiple offspring. By set-
ting a threshold distance η0, a link between events i and j is removed if ηi j > η0,
for all i and j such that i < j. The removal of weak links leads to the identification
of clusters of events; in each cluster, we define the largest magnitude event as main-
shock, the events preceding the mainshock as foreshocks, and the events following
the mainshock as aftershocks.

According to Zaliapin and Ben-Zion [6], the histogram of the distances between
every pair of events clearly shows a bimodal distribution that can be approximated
as a mixture of two Gaussian distributions, one associated with the Poissonian back-
ground activity (independent events) and the other with the clustered populations.
Thus, threshold distance η0 can be chosen as equal to the intersection point of the
two estimated Gaussian distributions.

Parameters α , b, and d f are estimated by the Unified Scaling Law for Earth-
quakes (USLE) method [3, 5].

1.2 Stochastic declustering method (SD)

The stochastic declustering approach is based on the space-time epidemic-type af-
tershock sequence (ETAS) model [4], a branching point process controlled by its
intensity function λ ∗(t,x,y,M |Ht) conditional on the observation history Ht up to
time t.

Let (t j,x j,y j,M j) denote occurrence time, epicentral coordinates and magnitude
of j-th event. Under the assumption of stationarity, ergodicity, and independence of
the magnitude, the general expression of the conditional intensity function of ETAS
model is given by:
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λ
∗(t,x,y,M |Ht) = J(M)λ (t,x,y |Ht) =

= J(M)

[
µ(x,y)+ ∑

{k:tk<t}
k(Mk)g(t− tk) f (x− xk,y− yk |Mk)

]
,

which, in the formulation of this study, decomposes into:

J(M) = be−b(M−Mc) , (2)
µ(x,y) = νu(x,y) , (3)

k(M) = Ae−α(M−Mc) , (4)

g(t) =
{
(p−1)cp−1(t + c)−p for t > 0
0 otherwise , (5)

f (x,y |M) =
(q−1)D2(q−1)eγ(q−1)(M−M0)

π[x2 + y2 +D2eγ(M−M0)]q
. (6)

where Mc is the magnitude threshold of the catalog; Eq.(2) is the distribution of
earthquake magnitude; the background rate in Eq.(3) is assumed to be constant in
time; the expected number of events triggered from an event of magnitude M is
expressed by Eq.(4); the probability density function of the occurrence times and
the location distribution of the triggered events are given by Eqs.(5-6), respectively.
It is also worth defining the total spatial intensity m(x,y) = limT→∞

∫ T
0 λ (t,x,y |

Ht)dt/T and the clustering spatial intensity γ(x,y) = m(x,y)− µ(x,y). The model
parameters are denoted by ν , A, c, α , p, D, q, and γ .

In ETAS model, background earthquakes independently occur at a Poisson rate
constant in time, triggering other events with a spatio-temporal decay modelled by
the Omori-Utsu law; triggered events have, in turn, the ability to trigger other events.
The following expressions respectively provide the probability that event j is trig-
gered by previous event i, the probability that event j is triggered in general, and the
probability that event j is generated by the background process:

ρi j =
k(Mi)g(t j− ti) f (x j− xi,y j− yi |Mi)

λ (t j,x j,y j |Ht j)
(7)

ρ j = ∑
i:ti<t j

ρi j (8)

ϕ j = 1−ρ j (9)

By simulating according to these probabilities, the dataset splits into two subsets
which are realizations of the background process and the triggered process, respec-
tively: the former is the declustered catalog and the latter identifies a set of clusters
each starting from a background event.

The estimation of ETAS parameters is performed by an iterative algorithm that
simultaneously estimates the background rate by a variable kernel method and the
model parameters by the maximum likelihood method; then the branching structure
is obtained by simulation [7, 8, 9].
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2 Case study: Northeastern Italy seismicity

The comparative analysis of earthquake clusters is carried out for a sequence of
earthquakes occurred in Northeastern Italy. In this area only low-to-moderate mag-
nitude events have been recorded during the last decades, despite its high seismic
hazard attested by at least eight historical destructive earthquakes occurred since
1348, the most recent one being the 1976 May 6 M6.4 earthquake, located in the
Julian Prealps. A further aim of the clustering analysis is to provide a quantitative
basis to understand the role of moderate size earthquakes in the framework of re-
gional seismicity.

2.1 Data

The Italian National Institute of Oceanography and Experimental Geophysics (OGS)
started with the monitoring of seismic activities in the Northeastern area of Italy
since 1977. We consider the set of earthquakes reported in the OGS bulletins, oc-
curred from 1977 to 2015, with local magnitude at least Mc = 2, and ranging from
11.5◦E to 14.0◦E in longitude and from 45.5◦N to 47.0◦N in latitude (Fig. 1).
The dataset is considered as complete except for the early 1990s, when data are
missing due to a fire accident [5].
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Fig. 1 Epicentres of the earthquakes in the study area: black point if magnitude M ≤ 5, white
points otherwise [left]. Cumulative number of earthquakes versus time (top) and magnitude versus
time (bottom) [right].
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2.2 Results

NN method univocally splits the dataset into two subsets, a set of background events
and a set of triggered events; more details are given in [5]. A tree representation
of the identified clusters is provided in order to better highlight the complexity of
clusters structure. For example Fig. 2(a) shows the tree of the cluster related to the
1998 earthquake, with magnitude M5.6.

(a) (b)

1998/4/12−M5.6

1998/5/6−M4.6

1998/4/12−M5.6

1998/4/15−M3.9

1998/5/6−M4.6

1999/10/29−M2.8

2015/12/4−M2

(c) (d)

1998/4/12−M5.6

1998/4/15−M3.9

1998/5/6−M4.6

1999/10/29−M2.5

2002/9/30−M3.9

2002/9/30−M2

2004/7/12−M5.1

2015/8/29−M4.3

1998/4/12−M5.6

1998/4/15−M3.9

1998/5/6−M4.6

1999/10/7−M2.22002/9/30−M3.9

2004/7/12−M5.1

2015/8/29−M4.3

Fig. 2 Cluster trees of the 1998/4/12 earthquake, magnitude M5.6: (a) NN method, (b) SD method,
the most probable scenario, and (c-d) SD method, two simulated scenarios, respectively.
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As for the SD method, each event j in the dataset is associated with the esti-
mated probability ϕ̂ j (ρ̂ j) to be a background (triggered) event. These probabilities
provide different clustering scenarios: Fig. 2(b) shows the cluster tree of the 1998
earthquake where each j−th event is associated with the most probable ancestor i∗

(i∗ = argmaxi< jρi j), while Fig. 2(c-d) show the cluster trees of the same earthquake,
each derived by simulation according to the estimated background probabilities. For
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Fig. 3 Estimated background rates (a), estimated clustering rates (b), ratio between estimated clus-
tering rate and estimated total rate (c), and histogram of the estimated background probabilities (d).

all the spatial coordinates (x,y) in the study area, with reference to SD method, Fig.
3 shows: (a) the estimated background rates µ̂(x,y), (b) the estimated clustering rate
γ̂(x,y), (c) the ratio between between estimated clustering rate γ̂(x,y) and estimated
total rate m̂(x,y), which can be regarded as a smoothed approximation of the trig-
gering probabilities ρ j. Fig. 3(d) shows the histogram of the estimated background
probabilities ϕ̂ j, from which the triggering probabilities are given by ρ̂ j = 1− ϕ̂ j:
most of the events have high probability of being either background events (21% for
ϕ̂ j ≥ 0.9) or triggered events (42% for ϕ̂ j ≤ 0.1), and the remaining events have less
decisive probabilities (about 37% of the data have background probability ranging
from 0.1 to 0.9).

A preliminary comparison of results from the two methods shows that the cluster
structures produced by NN and SD approaches have comparable trend in terms of
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spatial extent of seismic clusters. But SD method tends to find some connections
between events close in space even if far in time. With reference to 1998 earthquake
(Fig. 2), its NN-cluster includes only 480 earthquakes while SD-clusters have more
than 900 earthquakes, on average; this is due to the presence in the SD-clusters of
earthquakes occurred years later (e.g. in 2002, 2004, or even 2015).

For large sequences, trees obtained from the SD method show a more complex
internal structure than trees obtained by the NN method. To quantify topological
differences among trees, the average node depth and average leaf depth are con-
sidered. The former is the average number of links that connects each node of the
tree root; the latter is similarly defined as the average number of links that connects
each leaf (node without descendant) to the tree root. According to these scalar mea-
sures of internal complexity of a tree, average node depth and average leaf depth
are, respectively, 1.30 and 1.31 for the NN-cluster in Fig. 2(a), 5.59 and 5.59 for the
SD-cluster in Fig. 2(b), 5.90 and 6.14 for the SD-cluster in Fig. 2(c), 6.20 and 6.43
for the SD-cluster in Fig. 2(d). Greater complexity of the clusters identified by SD
method reflects the multilevel triggering property of the ETAS model; we recall that
ETAS model assumes that each event is able to generate offspring.
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