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Abstract Finite mixture models assume that a population is a convex combination
of densities; therefore, they are well suited for clustering applications. Each clus-
ter is modeled using a density function. One of the most flexible distributions is
the generalized hyperbolic distribution (GHD). It can handle skewness and heavy
tails, and has many well-known distributions as special or limiting cases. The mul-
tiple scaled GHD (MSGHD) and the mixture of coalesced GHDs (CGHD) are even
more flexible methods that can detect non-elliptical, and even non-convex, clus-
ters. The drawback of high flexibility is a high parametrization — especially so for
high-dimensional data because the number of parameters is depends on the number
of variables. Therefore, the aforementioned methods are not well suited for high-
dimensional data clustering. However, the eigen-decomposition of the component
scale matrix can naturally be used for dimension reduction obtaining a transforma-
tion of the MSGHD and MCGHD that is better suited for high-dimensional data
clustering.
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1 Background: Model-based clustering

Model-based clustering assumes that a population is a convex combination of a
finite number of densities. A random vector X follows a (parametric) finite mixture
distribution if, for all x⊂ X, its density can be written
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f (x | ϑϑϑ) =
G

∑
g=1

πg fg(x | θθθ g),

where πg > 0, such that ∑
G
g=1 πg = 1, is the gth mixing proportion, fg(x | θθθ g) is the

gth component density, and ϑϑϑ = (π,θθθ 1, . . . ,θθθ G) is the vector of parameters, with
π = (π1, . . . ,πG). The component densities f1(x | θθθ 1), . . . , fG(x | θθθ G) are usually
taken to be of the same type. Over the past few years, non-Gaussian model-based
clustering techniques have gained popularity. [3] proposed the use of the general-
ized hyperbolic distribution (GHD), which has the advantage of being extremely
flexible because it is characterized by five parameters–the mean, the scale matrix,
the skewness, the concentration and the index parameters. Many other distributions,
e.g. the Gaussian or the the skew-t distribution, can be obtained as a special or
limiting cases. The density of a random variable X from a generalized hyperbolic
distribution is

fH(x |ϑϑϑ)=

[
χ +ΣΣΣ(x,µµµ|ΣΣΣ)

ψ +ααα ′ΣΣΣ−1
ααα

] λ− p
2

2
(ψ/χ)

λ
2 Kλ− p

2

(√
[ψ +ααα ′ΣΣΣ−1

ααα][χ +ΣΣΣ(x,µµµ|ΣΣΣ)]

)
(2π)

p
2 |ΣΣΣ | 12 Kλ (

√
χψ)exp{(µµµ−x)′ΣΣΣ−1

ααα}
,

(1)
where ΣΣΣ(x,µµµ | ΣΣΣ) = (x− µµµ)′ΣΣΣ−1(x− µµµ) is the squared Mahalanobis distance be-
tween x and µµµ , Kλ is the modified Bessel function of the third kind with index λ ,
and ϑϑϑ denotes the parameters. The parameters have the following interpretation:
λ is an index parameter, χ and ψ are concentration parameters, ααα is a skewness
parameter, µµµ is the mean, and ΣΣΣ is the scale matrix.

Let Y ∼ GIG(ψ,χ,λ ), where GIG indicates the generalized inverse Gaussian
distribution [1], and the density is given by

h(y | θθθ g) =
(y/η)λ−1

2ηKλ (ω)
exp
{
−ω

2

(
y
η
+

η

y

)}
. (2)

Consider Y and a random variable V ∼N (0,ΣΣΣ). Then, a generalized hyperbolic
random variable X, see (1), can be generated via

X = µµµ +Y ααα +
√

Y V, (3)

and it follows that X | Y ∼N (µµµ + yααα,yΣΣΣ).
Note that the parameterization used in (1) requires the constraint |ΣΣΣ | = 1 to en-

sure identifiability, but this constraint is not practical for clustering applications.
Therefore, an alternative parameterization, setting ω =

√
ψχ and η =

√
χ/ψ , is

used with η = 1 (see [3]). Under this parametrization the density of the generalized
hyperbolic distribution is



Flexible clustering methods for high-dimensional data sets. 3

fH(x | ϑϑϑ) =

[
ω +ΣΣΣ(x,µµµ|ΣΣΣ)

ω +ααα ′ΣΣΣ−1
ααα

] λ− p
2

2
Kλ− p

2

(√
[ω +ααα ′ΣΣΣ−1

ααα][ω +ΣΣΣ(x,µµµ|ΣΣΣ)]

)
(2π)

p
2 |ΣΣΣ | 12 Kλ (ω)exp{−(µµµ−x)′ΣΣΣ−1

ααα}
.

(4)
Details of this alternative parameterization, as well as maximum likelihood pa-

rameter estimates are given by [3]. Parameter estimation for the mixture of gen-
eralized hyperbolic distributions model can be carried out via the expectation-
maximization (EM) algorithm [4].

1.1 Multiple scaled generalized hyperbolic distribution

The index and concentration parameters, λ and ω are unidimensional, i.e. they are
the same for every dimension. Basing on the idea of [5], [8] proposed the multiple
scaled GHD, where λλλ and ωωω are p-dimensional vectors, i.e., they can vary in each
dimension. To introduce the multiple scaled distribution we need to define the nor-
mal variance-mean mixture. The distribution of a p-dimensional random variable
X is said to be a normal variance-mean mixture if its density can be written in the
form

f (x | µµµ,ΣΣΣ ,α,θθθ) =
∫

∞

0
φp (x | µµµ +wα, f (w)ΣΣΣ)h(w | θθθ)dw, (5)

where φp (x | µµµ +wα,wΣΣΣ) is the density of a p-dimensional Gaussian distribution
with mean µµµ +wα and covariance matrix f (w)ΣΣΣ , and h(w | θθθ) is the density of a
univariate random variable W > 0 that has the role of a weight function [2, 6]. This
weight function can take on many forms, when the density of W follow a generilized
inverse Gaussian distribution, ft(x | µµµ,ΣΣΣ ,ν) follows the density of the GHD. [5]
show that a multi-dimensional weight variable

ΣΣΣ W = diag
(
w−1

1 , . . . ,w−1
p
)

can be incorporated into (5) via an eigen-decomposition of the symmetric positive-
definite matrix ΣΣΣ , setting ΣΣΣ = ΓΓΓ ΦΦΦΓΓΓ

′. Following [7] the formulation of the GHD in
(4) can be written as a normal variance-mean mixture where the univariate density
is GIG, i.e.,

X = µµµ +Wα +
√

WV, (6)

where V∼ N(0,ΣΣΣ) and W has density

h(w | ω,1,λ ) =
wλ−1

2Kλ (ω)
exp
{
−ω

2

(
w+

1
w

)}
, (7)

for w > 0, where ω and λ are as previously defined. From (6) and (7), it follows that
the generalized hyperbolic density can be written
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f (x | µµµ,ΣΣΣ ,α,ω,λ ) =
∫

∞

0
φp (x | µµµ +wα,wΣΣΣ)h(w | ω,1,λ )dw. (8)

The density of a multiple scaled generalized hyperbolic distribution (MSGHD)
is

fMSGHD(x | µµµ,ΓΓΓ ,ΦΦΦ ,α,ω,λ ) =∫
∞

0
· · ·
∫

∞

0
φp
(
ΓΓΓ
′x−µµµ−∆ wα | 0,∆ wΦΦΦ

)
hw(w1, . . . ,wp | ω,1,λ )dw1 . . .dwp,

(9)

where ω = (ω1, . . . ,ωp)
′, λ = (λ1, . . . ,λp)

′, 1 is a p-vector of 1s, and

hW(w1, . . . ,wp | ω,1,λ ) = h(w1 | ω1,1,λ1)×·· ·×h(wp | ωp,1,λp).

Then, a mixture of MSGHDs (MMSGHDs) has density

f (x | ϑϑϑ) =
G

∑
g=1

πg fMSGHD

(
x | µµµg,ΓΓΓ g,ΦΦΦg,αg,ωg,λ g

)
. (10)

Details of maximum likelihood parameter estimates and EM-algorithm are given by
[7].

1.2 Mixture of Coalesced Generalized Hyperbolic Distributions

The generalized hyperbolic distribution is not a special or limiting case of the MS-
GHD under any parameterization with p > 1. [7] proposed a coalesced generalized
hyperbolic distribution (CGHD) that contains both the generalized hyperbolic dis-
tribution and MSGHD as limiting cases. The CGHD arises through the introduction
of a random vector

R =UX+(1−U)S, (11)

where X = ΓΓΓ Y, Y v GHD(µµµ,ΣΣΣ ,α,ω0,λ0), S v MSGHD(µµµ,ΓΓΓ ,ΦΦΦ ,α,ω,λ ), with
ΣΣΣ = ΓΓΓ ΦΦΦΓΓΓ

′, and U is an indicator variable such that

U =

{
1 if R follows a generalized hyperbolic distribution, and
0 if R follows a MSGHD.

It follows that X = ΓΓΓ µµµ +WΓΓΓ α +
√

WΓΓΓ V, where ΓΓΓ V v Np
(
0,ΓΓΓ ΦΦΦΓΓΓ

′), S = ΓΓΓ µµµ +
ΓΓΓ α∆ w +ΓΓΓ A, where ΓΓΓ A v Np

(
0,ΓΓΓ ∆ wΦΦΦΓΓΓ

′), and the density of R can be written

fCGHD(r | µµµ,ΓΓΓ ,ΦΦΦ ,α,ω,λ ,ω0,λ0,ϖ)

= ϖ fGHD

(
r | µµµ,ΓΓΓ ΦΦΦΓΓΓ

′,α,ω0,λ0
)
+(1−ϖ) fMSGHD (r | µµµ,ΓΓΓ ,ΦΦΦ ,α,ω,λ ) ,

(12)
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where fGHD(·) is the density of a generalized hyperbolic random variable, fMSGHD(·)
is the density of a MSGHD random variable, and ϖ ∈ (0,1) is a mixing proportion.
Note that the random vector R would be distributed generalized hyperbolic if ϖ = 1
and would be distributed MSGHD if ϖ = 0.

Parameter estimation can be carried out via a generalized expectation-maximization
(GEM) algorithm [4].

2 Dimension reduction

The mixture of GHDs, MSGHDs, and CGHDs are extremely flexible and give good
clustering performance; however, the flexibility is obtained increasing the number
of parameters. This makes the methods unsuitable for high-dimensional data sets.
The problem can be solved considering that the singular value decomposition of the
scale matrix ΣΣΣ = ΓΓΓΨΓΓΓ

′ naturally leads to dimension reduction using p× q ΓΓΓ and
q×q diagonal ΦΦΦ with q < p. The random variable Y is defined as

Y = ΓΓΓ
∗X+ ε, (13)

with X∼GHD(µµµ,ΣΣΣ ,α,ω,λ ), and ε ∼ N(0,Ψ) where Ψ is a q dimensional diago-
nal matrix. Using (11) and ( 13) It follows that

Y = ΓΓΓ
∗
µµµ +ΓΓΓ

∗wα +ΓΓΓ
∗√wV+ ε, (14)

and
Y∼ GHD(ΓΓΓ ∗µµµ,ΓΓΓ ∗α,(ΓΓΓ ∗ΦΦΦ(ΓΓΓ ∗)′+Ψ),λ ,ω). (15)

Similarly if X∼MSGHD(µµµ,ΣΣΣ ,α,ω,λ ),

Z∼MSGHD(ΓΓΓ ∗µµµ,ΓΓΓ ∗α,ω,λ ,ΦΦΦ +Ψ). (16)

Define Φ̃ΦΦ :=Ψ +ΦΦΦ , a q× q diagonal matrix. The mixture models obtained us-
ing the new proposed density function will be defined as low-dimension mixture of
GHDs (LMGHDs) and lo- dimension mixture of MSGHDs (LMMSGHDs) respec-
tively. Using the same procedure used in Section 1.2 we can obtain the lowdimen-
sion mixture of CGHDs (LMCGHDs). The parameters that maximize the likelihood
for each model can be estimated using the EM-algorithm.
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