
Bayesian estimation of number and position of
knots in regression splines
Stima Bayesiana del numero e della posizione dei nodi in
spline di regressione

Gioia Di Credico, Francesco Pauli and Nicola Torelli

Abstract Regression splines, based on piecewise polynomials, are useful tools to
model departures from linearity in the regression context. The number and location
of the knots can be of interest in many contexts since they can detect possible change
points in the relationship between the variables. This work is focused on the estimate
of both number and location of knots in the simple case where linear truncated
splines are chosen to represent the relationship, in this case, the position of the
knot detects a change in the slope. In a Bayesian context, we propose a two-step
procedure, to first determine the true number of knots and then to fit the final model
estimating simultaneously location of knots and regression and spline coefficients.
Sommario Le spline applicate a modelli di regressione con polinomi a tratti pos-
sono essere utili al fine di descrivere relazioni non lineari. In alcuni contesti e im-
maginando di limitare l’attenzione a splines con componenti lineari, può essere
interessante conoscere il numero e la posizione dei nodi che sono quindi i cambi di
pendenza della retta di regressione. Tuttavia, stimare numero e posizione dei nodi
aggiunge una componente di stima non lineare al problema di ottimizzazione. Pro-
poniamo una procedura in due passi che prima determina il numero ottimale dei
nodi e poi ne stima la posizione, congiuntamente agli altri coefficienti del model-
lo. La metodologia viene applicata qui ai modelli lineari adottando un approccio
bayesiano.
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1 Introduction

When modelling the relationship between a response and some (continuous) covari-
ates the linearity assumption turns out to be too restrictive in many contexts. Naive
solutions to overcome this limitation such as categorization of the predictor or its
polynomial representation have well-known drawbacks.

A viable alternative is represented by spline functions. They are defined as piece-
wise polynomials with a fixed degree whose joint points are called knots. Splines
are highly flexible, in fact, varying the number and position of knots may lead to ex-
tremely different shapes and a major risk is to overfit the data. A classical approach
consists in using an optimizing criterion with a suitable penalization to control the
roughness of the function. Other techniques proposed in the literature include the
use of variable selection to choose basis function [6], or employing samplers that
allow for varying dimension of the parameter [2, 3].

Assuming that the number and position of knots may have an important and sub-
stantial interpretation, here we consider their estimation following one of the most
recent approaches to variable selection in a Bayesian context. Estimating the posi-
tions of the knots is not an easy task and, for a fixed degree, regression coefficients
and locations of knots have to be estimated simultaneously, turning the standard es-
timation procedure into a nonlinear optimization problem. In the sequel, we propose
a method to estimate the number and position of knots with a two-step procedure.

2 Methods

Consider the model

yi = zᵀi α + f (xi)+ εi, i = 1, . . . ,n

where z is the covariates vector that enters linearly in the model, α is the vector
of regression coefficients, x is a continuous variable evaluated through a smooth
function f :R→R, described with a spline with few knots and ε is an i.i.d. Gaussian
random error component.

We restrict our analysis to those situations in which a low number of knots can
be adequate and their positions are directly interpretable and of specific interest for
the analysis. This is the case, for example, when truncated power basis (TPB) of
order one is used since in this case positions of knots represent changing points for
the slope. One of the main drawbacks of truncated power basis representation is that
the basis is not orthogonal, which can lead to numerical instability and slow conver-
gence of the optimization algorithm. Keeping a low number of knots alleviates the
issue [5].

Let then

f (x) = β0 +β1x+
K

∑
k=1

γk(x−ξk)+, (1)
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where ξk is the position of the k-th knot and K is the total number of knots, and

(x−ξ )+ =

{
x−ξ , if x≥ ξ

0, otherwise
(2)

is the truncated linear function. Given the number of knots, parameters estimation
reduces to maximum likelihood estimate. A usual approach is to choose the knot
locations using standard criteria (such as quantiles of the predictor distribution, uni-
formly distributed knots on the range of the independent variables and user-defined
knots following a priori information [5]), estimate models with a different number
and location of knots and compare them through standard criteria, such as AIC,
BIC or GCV. This procedure often results in a not clear discrimination among all
competing models.

In order to enhance the fit of the model, a possible extension is to consider loca-
tions of knots as parameters to be estimated along with other regression coefficients.
In such a case, within a maximum likelihood approach, exploration of the objective
function surface could locate local maxima leading to apparent solutions strongly
dependent on starting values. A Bayesian specification of the model and exploring
of the posterior distribution, possibly by using MCMC simulations, could prove in
this case much more effective.

Our aim is to estimate both number and location of knots, thus a preliminary idea
is to estimate several models with free knot locations and with increasing but fixed
number of knots. Knots are constrained to be ordered and their prior distributions
are Uniform on the range of the variable. Vague priors on the regression and spline
coefficients are chosen (zero-centered normal with large variance). We will refer to
this model as the no variable selection (NVS) model.

Models with an increasing number of knots were compared on the basis of di-
agnostic tools such as traceplots and R̂ to check convergence of parameters and
information criteria were used to choose the best model among the estimated ones.
The main drawback of this procedure is a large number of models that one needs to
consider and the implied computational effort in high dimensional problems. How-
ever, results obtained on simulated data on the basis of these diagnostic tools show
that it can lead to reasonable estimates and that convergence of chains for knot re-
lated parameters is univocal only if the number of specified knots is lower or equal
to the true one.

This prompted us to consider a two-step procedure:

• select the optimal number of knots considering a large, possibly, overparameter-
ized model,

• fit the final model by simultaneously estimating locations of knots and regression
and spline coefficients.

In the first step, we estimate a model having more knots than reasonably warranted.
This leads to an overparameterized model where the posterior of some knot lo-
cations are expected to concentrate at the limits of the predictor range. To assess
convergence of the spline parameters, our advice is to run several chains and look at



4 Gioia Di Credico, Francesco Pauli and Nicola Torelli

the results of each chain separately. Indeed, overparameterizing the model may lead
to chains which converge at different points. Since each knot location is uniquely
linked to a spline coefficient, we evaluate the presence of a knot based on the anal-
ysis of the associated coefficient posterior distribution.

The concept underlying the proposed methodology is to perform variable selec-
tion on the basis functions, for this purpose we employ one of the most common
approaches in Bayesian literature: that based on the definition of spike-and-slab pri-
ors. Several versions have been proposed in the literature [4] but, generally speaking,
prior distributions for the regression coefficients are defined with a spike component,
usually highly concentrated around zero, and a diffused slab part. This is the case
of the stochastic search variable selection approach (SSVS), that defines a mixture
distribution for each parameter that has to be selected [4]. This type of methodology
gives us the opportunity to evaluate the presence of a variable through the marginal
posterior distribution of the mixing proportion. Starting from the NVS model spec-
ification, we set a prior distribution on each spline parameter γk such that

π(γk|λk) = λkN(0,σsl)+(1−λk)N(0,σsp),

where the mixing proportion λk ∼ Beta(a,b), with a = b. Standard deviations of the
two mixture components, σsl and σsp, are chosen to be respectively large and small.
Appropriate values have to be evaluated taking into account the unit of measurement
of dependent and independent variables.

Our method adapts the SSVS approach by assuming λk to be dependent on the
knot location ξk. The prior distributions of the ordered knots remain defined as
Uniform on the support of the variable X and independent from both the mixing
proportion λ and the coefficient γ . Each coefficient γk, conditioned on the mixing
parameter λk follows the same mixture distribution of two components specified in
the SSVS approach described above, while each element of the mixing proportion
vector λ is now defined as:

λk|ξk ∼ Beta(a,bk),

where a is a positive but very small value and bk : [min(X);max(X)]→ [a;1+a] is
a U-shaped even function of the knot location which returns values close to 1+ a
when the knot is near the boundaries of the variable, while it is almost uniform and
close to a elsewhere. In practice, the prior for the mixing parameter swings between
a beta U-shaped distribution when the knot location is on plausible values and a beta
distribution highly concentrated on zero when the knot is close to the boundaries. All
the other prior distributions remain defined as in the previous model specification.

In the next section, we compare results from (i) the proposed method, named
later on SSVSξ , with (ii) the ones obtained from the SSVS approach and (iii) the
same model without a variable selection procedure, NVS.
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3 Preliminary results

We simulate data from the linear regression model

yi = 6+2xi−5(xi−2.7)++8(xi−4.3)++ εi, i = 1, . . . ,500,

where εi ∼ i.i.d. N(0,3) and the predictor X is defined on the interval [0;10]. Two
knots are placed respectively in 2.67 and 4.33. We set the parameter a of the mix-
ing proportions λ for the SSVS and the SSVSξ models equal to 0.5. Moreover,
we chose σsl equal to 100 and σsp equal to 0.1. Standard deviations of the prior
distributions on spline coefficients and intercept were chosen equal to 100.

We run 10 chains with 2000 iterations each. Posterior inference is based on the
last 1000 draws of each chain. To support the complete exploration of the posterior
distribution, initial values for the location of the knots are chosen widely spread on
the range of the predictor variable X . Spline coefficients and intercept are initialized
at zero. The three models are fitted with a different number of knots (respectively
with 2, 5 and 10 knots). The interest lies in the parameter estimates, both spline
coefficients and knot locations, and in the analysis of the chains behavior.

The number of knots can be chosen in the SSVS and SSVSξ models looking at
the plots in Fig 1. The x-axis represents the specified number of knots in the over-
parameterized models, while the y-axis represents the posterior mean of the mixing
proportion. Vectors of posterior means are sorted in descending order and each line
corresponds to one chain. In both models performing variable selection, the selected
number of relevant knots is always equal to 2, even if the SSVSξ approach makes a
slightly clearer distinction with respect to the classic SSVS method.

Fig. 1 Posterior means of the mixing parameters λ in the overparameterized SSVS and SSVSξ

models with 5 and 10 knots.

The second step of the procedure is to estimate the models with the selected
number of knots.

The three models are compared by means of diagnostic tools, such as traceplots,
R̂, effective sample size (ne f f ) and analysis of marginal posterior distributions. Due
to space constraints, in table 1 we report estimates only for the SSVSξ model, pa-
rameter estimates are close to the true parameter values. The greatest discrepancies
among the model results are on the order of one decimal point. For the three models,
R̂ statistics equal to 1 suggest that the chains show good mixing, but differences in
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the ne f f estimates highlight a lower estimate stability of SSVS model compared to
the other two fitted models.

Table 1 Posterior distributions of the SSVSξ model parameters. The model is estimated with the
true number of knots. R̂ and ne f f statistics.

Parameter true mean sd 2.5% 50% 97.5% Rhat nSSV Sξ

e f f nSSV S
e f f nNV S

e f f

β0 6 6.6 0.6 5.4 6.6 7.6 1.0 4644 762 3313
β1 2 2.1 0.4 1.3 2.1 3.1 1.0 3039 667 2171
γ1 -5 -4.5 0.7 -5.8 -4.5 -3.3 1.0 2290 287 3468
γ2 8 7.4 0.6 6.3 7.3 8.5 1.0 2704 410 2690
ξ1 2.7 2.4 0.2 1.9 2.4 2.8 1.0 3183 3105 2066
ξ2 4.3 4.4 0.1 4.2 4.4 4.5 1.0 4634 597 5196
λ1 0.7 0.3 0.1 0.8 1.0 1.0 9387 3717
λ2 0.7 0.3 0.1 0.8 1.0 1.0 8299 7027

According to this limited evidence, SSVSξ approach should be chosen to per-
form the proposed procedure to estimate the number and location of the knots.
Among the three tested models, SSVSξ gives us the best results in terms of esti-
mation of the parameters and in terms of convergence of the algorithm.

Future developments involve (i) fitting more complex models considering also
higher degree splines or multidimensional spline representation and (ii) comparing
this procedure with alternative Bayesian approaches proposed in the literature (such
as those mentioned in the Sec.1.
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