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Abstract Heterogeneity and unreliability of data negatively influence the effective-
ness and reproducibility of the results in all fields involving sampling techniques.
Heterogeneity is mainly due to technological advances which imply improvements
in measurements resolution. Unreliability or under-representativeness in data may
be due to machine/software or human variances/errors, or other unidentifiable ex-
ternal factors. In the era of big data, technological evolution, and continuous data
integration, scientists are increasingly facing with the problems of how to (1) iden-
tify and filter-out unreliable data, and (2) harmonize samples gauged with different
platforms improved over time. This work is aimed at developing a new statistical
framework to address both issues, showing results in real case scenarios.
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Motivation and background

Nowadays, with the advent of high throughput technologies, new statistical chal-
lenges are aimed at combining large heterogeneous datasets produced under differ-
ent platforms having different efficiency, reliability and resolution. This is the case
of biomedical data, where the follow-ups of a clinical cohort of patients under treat-
ment may last over several decades and the monitoring of patient health-care must
benefit by the biotechnological improvements continuously consolidated. There-
fore, new statistical methods are required to understand how to consider, within
a unique framework, time series that are observed over a long period, and how to
distinguish whether the increased number of events is attributable to the change in
technology rather than to the disease change itself. Thus, it is crucial to obtain reli-
able and harmonized time-course data, addressing the problems of (1) the identifi-
cation and filtering of unreliable data, and (2) how to scale heterogeneous integrated
data to obtain consistent results in the application domain. This work is proposed as
a first step towards a mathematical/statistical solution of both problems.

Material and Methods

The filtering problem is addressed through the expected richness estimation via the
Hurlbert-Heck (HH) curve[l, 2] and the Species Pooling (SP) methods[3, 4, 5] for
an estimation of the unseen species. The base statistical methods have been previ-
ously applied in ecological and population-based studies. We exploited the Gener-
alized Nonlinear Model (GNM) as an estimator of the HH curve properly rescaled.
Then, using an empirical approach, we identified a minimum threshold for the rich-
ness over the whole cohort of data to filter out under-representative observations.
To address the problem of data integration for reproducible results over continu-
ous technological improvements and the scaling problem, we used a Rarefaction
Method[1, 2].Both methodologies have been applied in biomedical science using
molecular data (retroviral vector integration sites, IS) of Gene Therapy (GT) clin-
ical trials, a good case study for the presence of heterogeneous data. The filtering
technique is used basing on the richness in distinct number of ISs. The rarefaction
approach allowed improving data integration of IS by rescaling data in order to
obtain rarefied population measures (such as entropy indexes[6, 7]) that are more
robust and homogeneous than the un-scaled ones, thus potentially improving the
assessment of safety and long term efficacy of the treatment. A discussion of results
is finally presented.
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Results

Filtering Unreliable Data

Dealing with biological and molecular data, such as IS in GT studies, means deal-
ing with high variability in data collection and sampling, due to the high variability
of the available biological material (for example the different amount of DNA used
in each test). Thus, the number of retrieved IS from each patient at different time
points (IS, Richness) may vary. Therefore, we have to evaluate the level of richness
for each sample and filter-out those samples with an insufficient level of IS richness.
To overcome this problem, the percentage S¢, of richness in IS, observed over the
total can be defined as the ratio between the observed richness S and an estimator
of the whole theoretical richness ﬁmt, namely S¢, = S/ S’m. The theoretical richness
S,0: can be estimated in different ways, depending on the chosen Sampling Pooling
(SP) technique[3, 4, 5]. In this work, the SP estimator is chosen based on the best
Ranked Abundance Distribution (RAD)[8, 9] together with a p-leave out cross val-
idation. Namely, if the general lognormal (gln) curve is chosen as the best AIC.[10]
RAD model among the candidates!, or if, according to a xz Goodness of Fit test,
the gln distribution can be used in place of the optimal one, then the Preston esti-
mator Si  [3] is used. Otherwise the performance of Chao and ACE estimators
is compared[11] via a uniform leave-p = .3-out cross validation: the whole sam-
ple is considered as the sampling universe with a known total richness S,ps and the
[0, 1]-bounded quantity?

Afzsbts‘olute = min{SobSagest}/ maX{Sobs;SAest}

is used to compare the performance of the two non-parametric estimators. The more
the accuracy of the estimator, the greater A% is: therefore, the estimator best =
argminegs {AZ*ZS olut e} is chosen if the gln distribution is rejected as RAD model. Also,
in order to assess the accuracy of the species pooling estimator chosen among the
candidates, during the nFld = 100 p-leave-out cross simulations, three additional

accuracy indexes are calculated and compared with Agif;’alm. These are defined as

0.7 ,&0.7 0.7 ;&0.7 1 &l
Aeffective =1- ‘-7 - S()hs/S?ot Arelarive =1 — |S()bx/Stot - Sobs/Stot|

Acumulative = Min {S?ét77'§tlot}/ max {g?aZa Szlot}

where SS}Zw 807, S;bs, S}, are the observed and estimated (using the chosen estima-
tor) total richness in the 70% fold and in the whole sample respectively. By defini-

tion, they are [0, 1] bounded and the more the accuracy, the greater they are. As an

! Geometric Series, MacArthur’s Broken Stick, Zipf-Mandelbrodt, Zipf, General lognormal are
the candidate RAD models in the case study. All these distributions are fitted with the Maximum
Likelihood Estimation (MLE) technique.

2 .SA‘EX, is the estimation of the total richness S, obtained using the the estimator est € {Chao,ACE }
using the 70-random subsample.
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example, these indexes are calculated in the case study, together with AZ‘ZYUIW, and
the results are shown in Fig.1(a). Furthermore, in order to check robustness with re-
spect to little variations, the model selection and inference are performed on a fixed
number nRnd of binomial randomizations of the original data.

Therefore, a set of S¢’s is collected among all the samples, and a minimum
threshold for this quantity is identified to filter out under-representative observa-
tions. Without any ground-truth available, we used an empirical approach in which
the shape of the S¢,’s empirical cumulative distribution (eCDF) is analyzed, and we
selected as threshold (if existing) the main concave/convex inflection point over the
eCDF curve’, which could be interpreted as a signal of multimodal distribution.
Then, a Generalized Pareto Distribution (GPD) is fitted on the excesses above that
threshold (POT method[13]) and a QQ-plot between the empirical and GPD quan-
tiles could provide feedbacks on the quality of the fitting such that an higher quality
corresponds to a better overlap of the curve to the main diagonal. This method was
applied in our case study and the results are shown in Fig.1(b,c).

Another interesting question to deal with is the saturation problem: finding the
total abundance Ab;,; needed to reach a certain percentage level p of richness, say
the 90%. For this reason, the Hurlbert-Heck (HH) rarefaction curve[l, 2] E(S) is
calculated, over a properly chosen grid of rarefaction levels of total abundance, as
a pointwise estimation of the expected richness associated with each rarefaction
level. Then a family of generalized nonlinear models defined by a log-linear mix-
ture regression function E(Y) = g~ !(alog(X) + BX) and binomial distribution for
the response variable with probit, logit, cloglog as candidate link functions g are
applied on the percentage ratio S* = E(S)/ S0t Over Ab,y, and the one with the
maximum R? index is chosen. Also, in order to calculate the total abundance Abfgﬂ
associated with a certain percentage level p of richness, the regression function was
inverted via the numerical resolution of the Lambert function W(z)eW(Z),z €C.In
Fig.1(d) a graphical representation of the percentage HH curve and its regression
estimator are shown for one sample of the case study.

Scaling of the Heterogeneous Data

Another problem regarding the /S, data being analyzed in the case study concerns
the reliability of data interpretation due to the different orders of magnitude in total
abundance Ab;,;, and indeed in richness S,;, of IS5 reached in each sample mainly
due to the variation in resolution of the gauge instruments adopted during time.
Therefore, in order to compare any measure of safety obtained in each sample
(e.g. an entropy index), the whole cohort of data should be first rescaled to the same
magnitude level of total abundance. In this work, the minimum total abundance
level Abyaremax = MiNggnpires Abroy among the samples is used as rarefaction level.

3 The eCDF inflection points are found via the Extremum Distance Estimator (EDE) algorithm
[12].
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Then, a rarefaction technique[2], which essentially consists in random subsampling
with proportional abundances p; = Ab;/Ab,, as probability weights with Ab; the
abundance of the i-th species in the original sample, is applied in order to generate a
rarefied version of that sample. This results in a more homogeneous pool of samples
which can be used for entropy measures comparison during time of therapy. As an
example, the Renyi Entropy Spectre (RES)[7] is calculated on the IS, data of the
case study, before and after rarefaction. The results are shown in Fig.1(e,f).
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Fig. 1: (a) From top-left, the boxplot of the Absolute, Effective, Relative and Cu-
mulative accuracy indexes are shown respectively. (b) The empirical CDF associ-
ated with the collected sample of S%. The vertical red highlighted line represents
the threshold SZ‘;r estimated via the EDE algorithm. (¢) The scatterplot between the
empirical quantiles associated with the excesses below that threshold and the GPD
quantiles fitted on the same quantities. (d) The Hurlbert-Heck curve rescaled by the
sampling pooling species estimators S%),.,... S .00 Sieg are drawn in black, blue
and cyan. The observed and predicted ratio S% = S,,,,/S'” are respectively repre-
sented by the thick and thin lines. The 80%, 90% and 100% richness thresholds are
also shown as red dotted lines. This figure is related to a single sample. (e) The Renyi
Entropy Spectre is shown during time of therapy on the heterogeneous (un-rarefied)
and (f) homogeneous (rarefied) samples respectively.
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Discussion and Conclusion

As a result of the filtering method, some of the correlations expected to be biolog-
ically relevant (e.g. between DNA nanograms DNA,, and total abundance Ab;,; in
IS;) slightly increased, suggesting to further characterize the discarded samples.

Moreover, the comparison between the non-rarefied and rarefied entropy curves
shows the positive effect in data harmonization by reducing the fluctuations in re-
sults due to change in sampling technology. These findings shed lights on reliability
and reproducibility in continuous data integration over improvements in technolog-
ical changes, critical challenges in the era of big data and improvements in high-
throughput technologies. Species diversity could also be better addressed using the
Renyi Entropy Spectre, where the effect of most abundant clones is visible at higher
levels of g.

In conclusion, this work provided new methods to address the data integration
and rescaling from technological sources continuously evolving and the problem of
filtering unreliable data. Both problems approach the reproducibility of results in
science even over time, and data accuracy and reliability.

References

1. S. H. Hurlbert, “The Nonconcept of Species Diversity: A Critique and Alternative Parame-
ters,” Ecology, vol. 52, no. 4, pp. 577-586, 1971.
2. K. L. Heck, G. van Belle, and D. Simberloff, “Explicit Calculation of the Rarefaction Diver-
sity Measurement and the Determination of Sufficient Sample Size,” Ecology, vol. 56, no. 6,
pp. 1459-1461, 1975.
3. F. W. Preston, “The Commonness, And Rarity, of Species,” Ecology, vol. 29, no. 3, pp. 254—
283, 1948.
4. A. Chao, “Estimating the Population Size for Capture-Recapture Data with Unequal Catcha-
bility,” Biometrics, vol. 43, no. 4, p. 783, 1987.
5. R. B. O’Hara, “Species richness estimators: How many species can dance on the head of a
pin?,” Journal of Animal Ecology, vol. 74, no. 2, pp. 375-386, 2005.
6. T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd Edition. 2006.
7. 1. C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives.
No. X1V, 2010.
8. R. H. Whittaker, “Dominance and diversity in land plant communities,” Science, vol. 147,
no. 3655, pp. 250-260, 1965.
9. J.B. Wilson, “Methods for fitting dominance / diversity curves,” Journal of Vegetation Science,
vol. 2, no. 1, pp. 35-46, 1991.
10. K. P. Burnham and D. R. Anderson, “Multimodel inference: Understanding AIC and BIC in
model selection,” 2004.
11. A. E. Magurran and B. J. McGill, “Biological diversity: frontiers in measurement and assess-
ment,” Challenges, p. 368, 2011.
12. D. T. Christopoulos, “Developing methods for identifying the inflection point of a con-
vex/concave curve,” pp. 1-29, 2012.
13. G. Salvadori, C. De Michele, N. T. Kottegoda, and R. Rosso, Extremes in Nature: An approach
using Copulas. 2005.



