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Abstract Aim of this work is to develop a comparative analysis to evaluate the
performances of several Bayesian regression approaches in the high-dimensional
context where the number of observations is very small with respect to the number
of predictors. Moreover in this study we assume that the predictors can be expressed
only as binary variables coding the presence or the absence of a particular charac-
teristic of the system. This binary structure is very present in many real studies, in
particular in laboratory experimentation.
Abstract Lo scopo di questo lavoro è quello di sviluppare un’analisi compar-
ativa per valutare il comportamento di alcuni metodi inferenziali di regressione
Bayesiana in contesti di alta dimensonalità dove il numero di osservazioni è molto
piccolo rispetto al numero dei predittori assunti per il modello. Lo studio consid-
era solo predittori espressi in forma di variabili binarie in grado di codificare la
presenza e l’assenza di una particolare caratteristica del sistema. Questa struttura
del problema presente in molti studi di fenomeni reali e in particolare in ambito
sperimentale.
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1 Introduction

Bayesian regression models have been widely studied and adopted in the statistical
literature [14, 10]. Many studies regard the development of efficient and effective
priors to select the set of relevant variables and derive accurate posterior predictive
distributions [6, 4]. Moreover in the context of high-dimensionality, when there are
many predictors, sparsity is assumed and many parameters can be set to values very
close to zero without affecting the fit of the model [11, 9]. The Bayesian penal-
ized regression techniques for the analysis of high-dimensional data include, among
others, the Bayesian Lasso [8, 7], the normal-gamma regression [5], the horse-shoe
regression [1] and the Bayesian ridge regression [3, 12]. Generally the setup of
the regression considers the standard multiple linear model assuming independent
Normal error terms. Moreover it is usual to standardize both the response and the
covariates to have zero mean and variance equals to one. While there are several
studies conducted to compare the performances of the models when the predictors
are continuous, these approaches are not very suited when the predictors are bi-
nary variables. This situation frequently occurs in many experimental fields, as for
example in biochemical studies where the presence and absence of a component
determines the results of the experimentation and affects the success of the study. In
this paper we focus on this particular situation, and we conduct a simulation study to
compare the performance of several high-dimensional Bayesian regression models
when the predictors are expressed as binary variables.

The paper is organized as follows. In Section 2 we present the Bayesian multi-
variate regression model and we introduce the prior distributions considered in the
analysis. Section 3 describes the characteristics of the simulation study and presents
the results of the comparison by means of indicators of goodness of fitting and pre-
diction. Finally in Section 4 we derive some concluding remarks.

2 Bayesian regression

Let consider the standard multiple linear regression model which assumes that a
vector of responses y = (y1,y2, . . . ,yn) can be represented as

y = α1+Xβ + ε

where the vector of errors ε =(ε1, . . . ,εn)
T are independent with p(εi)=N(εi|0,σ2)

and X is an n× p matrix of predictor variables. The scalar α is the intercept, 1 a n×1
unit vector and the vector β represents the regression coefficients. In this work we
adopt the Bayesian inferential approach which involves a choice of the prior dis-
tribution of the (p× 1)-dimensional vector of regression coefficients β . Many ap-
proaches are proposed in literature to derive effective and efficient prior distributions
with different characteristics. Among them, the sparsity inducting priors are com-
monly applied in the setting of high-dimensionality, where most of the predictors are
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assumed to be unassociated with the responses. The hierarchical representation of
the full Bayesian regression model as proposed by [8], introduces the distributions
of the parameters and the hyperparameters as follows:

y|α,X,β ,σ2 ∼ Nn(α1+Xβ ,σ2In),

β j|λ 2
j ,σ

2 ∼ N(0,λ 2
j σ

2),

σ
2 ∼ π(σ2)dσ

2,

λ
2
j ∼ π(λ 2

j )dλ
2
j .

Different priors for σ2 lead to different regression structures in terms of error dis-
tribution, while the hyperparameters λ1,λ2, . . . ,λp are used to model the sparsity
characteristics and control the amount of shrinkage in the coefficient estimates [11].
Usually σ2 follows an improper prior distribution proportional to 1/σ2, while the
distribution assumed for λ1,λ2, . . . ,λp leads to different prior distributions for the
regression coefficients β . Therefore, depending on the particular choices for the
local shrinkage hyperparameters λ1,λ2, . . . ,λp we can consider some of the most
frequently used Bayesian regression models:

• Bayesian Lasso regression: the hyperparameters λ1,λ2, . . . ,λp follow a joint ex-
ponential prior distribution which depends on further hyperparameters. Gener-
ally, this assumption is simplified by assuming that λ 2

j ∼ Exp(1), i = 1, . . . , p
[8, 7];

• Horseshoe regression: the prior distribution for the local shrinkage hyperparam-
eters λ1,λ2, . . . ,λp is the zero-mean half-Cauchy distribution [1];

• Normal-Gamma regression: the hyperparameters λ1,λ2, . . . ,λp follow a Gamma
distribution where both shape and scale parameters have an associated prior dis-
tribution. Then the marginal distribution of β j is generally affected by these
choices in a way that smaller value of shape parameter of the Gamma distribution
is associated with larger amount of shrinkage for the betas [5];

• Bayesian Ridge regression: it can be obtained by assuming λ 2
1 = λ 2

2 = . . .= λ 2
p =

λ 2 [3].

3 A comparative simulation study

We conduct a comparative simulation study to evaluate the performance of the
Bayesian regression models under different prior distributions: Bayesian Lasso, the
Bayesian horse-shoe regression, the Bayesian normal-gamma regression and the
Bayesian ridge. The study has been conducted considering only binary variable
predictors. The statistical analyses were performed using the R-project free soft-
ware environment for statistical computing. In particular, we use the R-package
monomvn to fit the regression models [13].
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3.1 Experimental setting

The simulation is based on the linear regression model yi = Xiβ + εi, i = 1, . . . ,n,
where εi ∼ N(0,1). Predictors are generated independently from a Bernoulli distri-
bution with probability of success 0.1 to represent sparsity condition1. The simula-
tion considers an increasing number of predictors, p =200, 500, 1000, 1500, 2000,
3000. The number of non-zero regression coefficients is assumed to be p? = 10 with
values {−1,1}.

From this data generative process, we simulate N = 2000 observations (the full
dataset) and we randomly select n =100, 200 and 500 sample points (corresponding
to the 5%, 10% and 25% of the full space) as training set to estimate the models.
The remaining data are considered as test set on which to evaluate the performance
of the various Bayesian methods. Each simulation is repeated 50 MonteCarlo runs
to evaluate the robustness of the approaches and we compute the Predictive Mean
Square Error (PMSE) and the Sensitivity (the ratio between the number of selected
important variables and the number of actual important variables) as defined in [2].
In particular, values of Sensitivity close to 1 means that the approach is able to select
the relevant information for the regression.

3.2 Comparative results

The results for increasing number of predictors are presented, i.e. p= 200, 500, 1000,
1500, 2000, 3000. Note that for n=200, we did not run simulations for p=200, and
for n=500 we did not run simulations for p=200 and 500. In Table 1 we report the
evaluation of the prediction capacity by means of PMSE for the different regres-
sion models. We can see that with regard to the predictive power of the models,
they perform almost in the same way producing accurate predictions in particular
when the number of covariates don’t exceed too much the number of observations.
This predictive power tends to decrease when the ratio between the number of ob-
servations and variables tends to decrease. We notice that there is the same trend
for all the different approaches, however, the Bayesian Ridge regression presents
the poorest performance for all the different values of n here considered. A differ-
ent situation emerges if we consider the sensitivity measure by which the power of
selecting important variables of the simulation is expressed. In Figure 1 we show
how this measure evolves through the increasing values of p assuming different val-
ues of n. We notice that again the approaches show a very similar performance, but
the Bayesian Ridge regression presents values of Sensitivity higher than the other
regressions. Therefore, comparing the different indicators of performance of these
regressions we see that they all have a good prediction accuracy but the Bayesian
Ridge regression presents an higher capacity (Sensitivity) to detect the relevant vari-

1 We plan to develop the simulation also for other usual values of probability of success represent-
ing sparsity condition.
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Table 1 Predictive Mean Square Errors for regression: BL=Bayesian Lasso; HS= Horseshoe re-
gression; NG= Normal-Gamma regression; BR= Bayesian Ridge (standard errors of MonteCarlo
runs in parentheses).

n p BL HS NG BR

100 200 1.52 (0.10) 1.55 (0.14) 1.52 (0.10) 1.81 (0.15)
100 500 1.80 (0.11) 1.86 (0.16) 1.81 (0.11) 1.85 (0.16)
100 1000 1.88 (0.09) 1.91(0.14) 1.88 (0.09) 1.87 (0.13)
100 1500 1.99 (0.07) 2.00 (0.10) 1.99 (0.09) 2.08 (0.11)
100 2000 1.87 (0.06) 1.87 (0.07) 1.89 (0.10) 1.99 (0.11)
100 3000 1.99 (0.05) 1.98 (0.05) 1.99 (0.07) 2.20 (0.14)
200 500 1.40 (0.13) 1.42 (0.17) 1.41 (0.14) 1.53 (0.15)
200 1000 1.54 (0.16) 1.57 (0.15) 1.54 (0.14) 1.73 (0.30)
200 1500 1.75 (0.20) 1.77 (0.19) 1.75 (0.17) 1.94 (0.24)
200 2000 1.78 (0.10) 1.77 (0.11) 1.78 (0.10) 2.06 (0.22)
200 3000 1.93 (0.10) 1.91 (0.11) 1.92 (0.12) 2.28 (0.23)
500 1000 1.15 (0.07) 1.12 (0.09) 1.13 (0.08) 1.20 (0.09)
500 1500 1.35 (0.15) 1.34 (0.17) 1.35 (0.16) 1.36 (0.18)
500 2000 1.54 (1.13) 1.52 (0.14) 1.55 (0.14) 1.60 (0.16)
500 3000 1.80 (0.11) 1.76 (0.15) 1.79 (0.16) 1.85 (0.19)
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Fig. 1 Sensitivity measures for regression: BL=Bayesian Lasso; HS= Horseshoe regression; NG=
Normal-Gamma regression; BR= Bayesian Ridge.

ables of the system. The results of this simulation can be helpful when choosing the
structure of the regression model to adopt in a particular study.
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4 Concluding remarks

In this work we have developed a comparative analysis to study the performance
of several Bayesian regressions with binary predictors in terms of predictive accu-
racy and variables selection. Further analyses will be conducted to strengthen these
preliminary results and to identify the relation between n and p in deriving reliable
inferential results in particular when binary predictors are present in the model.
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