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Abstract Sales management is a fundamental issue in retail commerce, being one of the main ingredient to
maximise stores revenue. The huge amount of data accessible nowadays makes this task challenging. This
paper proposes a new nonparametric method for predicting sales quantiles at different confidence levels,
conditional on several explanatory variables such as the type of store, the location of the store, the type of
product and its the price, etc, thereby providing a complete picture of the relation between the response and
the covariates. Moreover, predicting extreme sales quantiles provide valuable information for building auto-
matic stock management systems and for the sales monitoring. As concerns the methodology, we propose to
approximate the conditional quantile at level τ ∈ (0,1) of the response variable using bayesian additive non-
parametric regression trees. Decision trees and their additive counterparts are promising alternatives to linear
regression methods because of their superior ability to characterise nonlinear relationships and interactions
among explanatory variables that is of fundamental relevance to get accurate predictions.
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1 Introduction

In empirical studies, researchers are often interested in analysing the behaviour of a response variable given
the information on a set of covariates. The typical answer is to specify a linear regression model where
unknown parameters are estimated using the Ordinary Least Squares (OLS). The OLS method estimates
unknown parameters by minimising the sum of squared errors leading to the approximation of the mean
function of the conditional distribution of the response variable. Although the mean represents the average
behaviour of the response variable, it provides little or no information about the behaviour of the condi-
tional distribution on the tails. As far as the entire distribution is concerned, quantile regression methods
[Koenker and Bassett, 1978] adequately characterise the behaviour of the response variable at different con-
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fidence levels. Moreover, the quantile analysis is particularly suitable when the conditional distribution is het-
erogeneous, non–Gaussian, skewed or fat–tailed, see, e.g., [Lum and Gelfand, 2012] and [Koenker, 2005].

Quantile models admitting a linear representation have been extensively applied in different areas,
see, e.g., [Yu et al., 2003], such as, finance, as direct approach to estimate the Value–at–Risk, i.e., the
loss–level a financial institution may suffer with a given confidence [Bassett Jr. and Chen, 2001], eco-
nomics and social sciences [Hendricks and Koenker, 1992], medicine [Heagerty and Pepe, 1999], survival
analysis [Koenker and Geling, 2001] and environmetrics [Pandey and Nguyen, 1999]. Futhermore, linear
quantile models have been theoretically investigated from both a Bayesian, [Sriram et al., 2013] and a
frequentist point of view, and the properties of the resulting estimates has been deeply studied. See
[Koenker et al., 2017] and [Davino et al., 2014] for an extensive and up to date review latest theoreti-
cal results on quantile methods and their interesting applications. However, despite their relevance and
widespread application in empirical studies, linear quantile models provide only a rough “first order” ap-
proximation of the relationship between the τ–level quantile of the response variable and the covariates.
Indeed, as first recognised by [Koenker, 2005], quantiles are linear functions only within a Gaussian world,
thereby stimulating many recent attempts to overcome this limitation. [Chen et al., 2009], [Faugeras, 2009],
[De Backer et al., 2017] and [Kraus and Czado, 2017], for example, consider the copula–based approach to
formalise nonlinear and parametric conditional quantile relationships. The copula approach, although quite
flexible in fitting marginal data, forget to consider nonlinear interactions among the covariates. This paper try
to overcome the traditional limitations of linear quantile methods by extending the quantile approach to the
promising field of decision trees. Decision trees are regression techniques that are very popular within the
machine learning community that try to mitigate the relevant problem of parsimoniously modelling interac-
tions among covariates. Indeed, decision trees partition the space of relevant covariates into pieces, usually
hyper–rectangles, where observations are homogeneous. For example, when the objective is to model the
average response, observations with the same unconditional variance are clustered together, while for clas-
sification problems observations are partitioned according to the Gini index. Since their introduction several
theoretical and applied papers have contributed to the diffusion of such idea in different contexts. Both the
machine learners and the statistics communities contributed to the development of tools and methods. An
up to date and comprehensive review of the methods developed in the machine learning literature can be
found for example in [Loh, 2014a], [Strobl, 2014], [Ciampi, 2014], [Ahn, 2014], [Song and Zhang, 2014],
[Rusch and Zeileis, 2014], [Loh, 2014b]. The main drawback of decision trees is related to the high variance
of the resulting forecasts. The most promising alternative approach [Breiman, 2001], namely, the random for-
est, is an ensemble of bootstrap decision trees that reduces the variance and provides also a straightforward
way to assess the relevant covariates. On the likelihood–based side, the Bayesian estimation of decision trees
have been considered in [Chipman et al., 1998], [Denison et al., 1998], [Sha, 2002] and [Wu et al., 2007]
and extended to additive trees by [Chipman et al., 2010]. The main novelty of this latter approach relies on
exploiting the likelihood of parametric models where regressors splitting rules play the role of hard thresh-
olding operators that partition the overall model into local models.

In this paper, we consider the Bayesian approach, namely, we extend the Bayesian Additive Regres-
sion Tree (BART) of [Chipman et al., 2010] to model the quantile of the response variable. The Bayesian
Additive Quantile Regression Trees (BAQRT) exploits the data augmentation approach that relies on the
Asymmetric Laplace working likelihood, see [Bernardi et al., 2015], to provide a Metropolis–within–Gibbs
sampling method that efficiently explores the regressors space. The data augmentation approach allows to
effectively marginalise out the leaf parameters of the trees when changing the tree structures. Section 2
formalises the likelihood function and the prior structure of the BAQRT method. Quantile random forest
(QRF) methods have been previously introduced in the machine learning literature by [Meinshausen, 2006].
[Meinshausen, 2006] exploits the original version of random forest for modelling the conditional mean to
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infer the structure of the tree, while assigning the empirical quantile of the observations falling into each
terminal leaf instead of the mean value. Therefore, the QRF algorithm is not highly flexible to adapt the
structure of the generated trees according to the modelled quantiles.

Given their appealing perspective of discriminating observations below and above a given quantile thresh-
old, the quantile approach is a promising method for solving many statistical problems usually encountered
in business and industry. In Section 3 we apply BAQRT to strategic sales management in retail stores. Sales
management is one of the main issues in retail commerce. Indeed, it is one of the main ingredient to max-
imise the income of stores. The huge amount of data accessible nowadays makes this task challenging.
Indeed, there are many potentially predictors that could be useful to predict and monitor sales but there is
not any model to reach this task. This is the usual situation in which machine learning algorithms represent
a powerful instruments to extract insight from such heterogeneous data. We consider the dataset provided by
BigMart, an international brand with both free home delivery services and outlet store of food and grocery,
to show how quantile regression trees could be useful in selecting the most relevant variables and analyse
their impact both for predicting and monitoring tasks.

2 Quantile regression tree

The linear quantile regression framework for independent and identically distributed data models the condi-
tional τ–level quantile of the response variable Y , with τ ∈ (0,1), as a linear function of the vector of dimen-
sion (q×1) of exogenous covariates X, i.e., Qτ (Y | X = x)= x′βββ , thereby avoiding any explicit assumptions
about the conditional distribution of Y | X = x. From a frequentist perspective, within a likelihood–based
framework, this is equivalent to assume an additive stochastic error term ε for the conditional regression
function µ (x) = x′βββ to be independent and identically distributed with zero τ–th quantile, i.e, Qτ (ε | x) = 0,
and constant variance. Following [Yu and Moyeed, 2001] and [Bernardi et al., 2015], the previous condition
is implicitly satisfied by assuming that the conditional distribution of the response variable Y follows an
Asymmetric Laplace (AL) distribution located at the true regression function µ (x), with constant scale
σ > 0 and shape parameter τ , i.e., ε ∼ AL(τ,µ (x) ,σ), with probability density function

AL(Y | X,σ ,τ) =
τ (1− τ)

σ
exp
{
− 1

σ
ρτ (Y −µ (x))

}
III(−∞,∞) (Y ) , (1)

where µ (x) is the regression function and ρτ (u) = u
(
τ− III(−∞,0) (u)

)
denotes the quantile check function at

level τ . The quantile regression model postulated in equation (1) assumes the AL distribution as a misspeci-
fied working likelihood that correctly identify the conditional quantile function.

Similarly to the Bayesian Additive Regression Tree approach of [Chipman et al., 2010] for modelling the
conditional mean of the response variable, the quantile regression tree approach extends the linear quan-
tile model defined in equation (1) by assuming a sum–of–trees ensemble for the regression function µ (x).
Specifically, the Bayesian Additive Quantile Regression Tree (BAQRT) model can be expressed as

Y = µ (x)+ ε (2)

≈T M
1 (x)+T M

2 (x)+ · · ·+T M
m (x)+ ε, (3)

where ε ∼AL(τ,0,σ). The assumption about the error term in equation (3) implies that µ (x)=Qτ (Y | X = x).
Furthermore, in equation (3) we assume that the quantile of the response variable is an additive function of
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m≥ q regression trees, each composed by a tree structure, denoted by T , and the parameters of the terminal
nodes (also called leaves), denoted by M . Therefore, the j–th tree for j = 1,2, . . . ,m, denoted by T M

j ,
represents a specific combination of tree structure T j and tree parameters M , i.e., the regression parameters
associated to its terminal nodes. The tree structure T j contains information on how any observation yi, in
a set of n independent and identically distributed observations y = (y1,y2, . . . ,yn), recurses down the tree
specifying a splitting rule for each non–terminal (internal) node. The splitting rule has the form xk ≤ c and
consists of the splitting variable xk and the splitting value c ∈ R. The observation yi is assigned to the left
child if the splitting rule is satisfied and to the right child, otherwise, until a terminal node is reached and the
value of the leaf of that terminal node is assigned as its predicted value. Therefore, the quantile prediction
corresponding to yi assigned by the sum of regression tree specified in equation (3) is the sum of the m
leaf values. Hereafter, we denote by M j =

{
µ j,1,µ j,2, . . . ,µ j,b j

}
the set of parameters associated to the b j

terminal nodes of the j–th tree, where µ j,l , for l = 1,2, . . . ,bl denotes the conditional quantile predicted by
the model.

The additive quantile regression tree specified in equation (3) provides a natural framework for likelihood–
based inference on the set of quantile regression parameters, i.e., the location parameters associated to the
terminal nodes of each tree belonging to the ensemble. However, additional prior information should be im-
posed in order to infer the structure of the each tree. The next Section discusses the likelihood and the prior
structure for both the model parameters and the trees.

2.1 Likelihood and prior

As discussed in [Yu and Moyeed, 2001], due to the complexity of the quantile likelihood function in equation
(1), the resulting posterior density for the regression parameters does not admit a closed form representation
for the full conditional distributions, and needs to be sampled by using MCMC–based algorithms. Following
[Kozumi and Kobayashi, 2011] and [Bernardi et al., 2015], we instead adopt the well–known representation
(see, e.g., [Kotz et al., 2001] and [Park and Casella, 2008]) of ε ∼ L(τ,0,σ) as a location–scale mixture of
Gaussian distributions:

ε = ζ ω + ς
√

σωε, (4)

where ω ∼ Exp
(
σ−1

)
and ε ∼ N(0,1) are independent random variables and Exp(·) denotes the Exponen-

tial distribution. Moreover, the parameters ζ and ς2 are fixed equal to

ζ =
1−2τ

τ (1− τ)
, ς

2 =
2

τ (1− τ)
, (5)

in order to ensure that the τ–th quantile of ε is equal to zero. The previous representation in equation (4) al-
lows us to use a Gibbs sampler algorithm for sampling the trees parameters µµµ j of tree j = 1,2, . . . ,m, detailed
in the next subsection. Exploiting the augmented data structure defined in equation (4), the additive quantile
regression tree in (3) admits, conditionally on the latent factor ω , the following Gaussian representation:

Y | ω = µ (x)+ζ ω + ς
√

σωε, (6)

≈T M
1 (x)+T M

2 (x)+ · · ·+T M
m (x)+ζ ω + ς

√
σωε (7)

ω ∼ Exp
(
σ
−1) . (8)
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The hierarchical model representation in equations (6)–(8) has the advantage of being conditionally Gaus-
sian, leading to a conjugate Bayesian analysis for the parameters associated to the terminal nodes and the
scale parameter as well.

The Bayesian inferential procedure requires the specification of the prior distribution for the unknown
vector of model parameters (µµµ,σ) and the structure of the tree. In principle, as discussed in the seminal
paper of [Yu and Moyeed, 2001], non informative priors can be specified for the vector of regression param-
eters, i.e., π (µµµ) ∝ 1. Alternatively, as in [Bernardi et al., 2015], the usual Normal–Inverse Gamma prior can
be specified for regression and scale parameters, respectively, i.e.,

µi ∼ N1
(
µ0,σ

2
µ

)
(9)

σ ∼ IG

(
ησ

2
,

ησ λσ

2

)
(10)

P(T ) ∝ α (1+d)−β , (11)

where α ∈ (0,1) and β ∈ [0,∞) and d is the depth of the tree defined as the distance from the root. Here, N1
denotes the univariate Normal density while IG is the Inverse Gamma distribution and

(
µ0,σ

2
µ ,ησ ,λσ

)
are

fixed hyperparameters, with ησ > 0 and λσ > 0.

Now, let y = (y1,y2, . . . ,yn) be the vector of observations on the response variable Y and let x = (x1, . . . ,xn)
′

be the associated matrix of covariates of dimension (n×q), then the joint prior distribution of the tree
structure and tree parameters augmented by the latent factor ω , can be factorised as follows:

P
(
T M

1 ,T M
1 , . . . ,T M

1 ,ωωω,σ
)
=

[
m

∏
j=1

P
(
T M

j | ωωω
)]

P(σ)

=

[
m

∏
j=1

P(M j |T j,ωωω)P(T j | ωωω)

]
P(ωωω)P(σ)

=

[
m

∏
j=1

b j

∏
l=1

P
(
µ j,` |T j,ωωω

)
P(T j | ωωω)

]
P(ωωω)P(σ)

=

[
m

∏
j=1

b j

∏
l=1

φ
(
µ j,` |T j,ωωω

)
P(T j | ωωω)

]
P(ωωω)P(σ) , (12)

where µ j,` denotes the parameter (conditional quantile) associated to the `–th terminal nodes of tree j =
1,2, . . . ,m, for ` = 1,2, . . . ,b, ωωω = (ω1,ω2, . . . ,ωn,σ) is the vector of auxiliary variables ωi ∼ Exp

(
σ−1

)
,

σ ∈ R is the scale parameter which is common to all the trees, and φ (·) denotes the gaussian probability
density function.

3 Application

Retail stores invest much effort in high level strategy to maximise their income. The type of store, its location,
the furnitures and the product proposal are some of the main ingredients driving strategic decisions. Sales
product prediction is therefore one of the most challenging problem in retail commerce, fundamental for
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Variable Name Description

Item Identifier Unique product ID
Item Weight Weight of product
Item Fat Content Whether the product is low fat or not
Item Visibility The % of total display area of all products in a store allocated to the particular product
Item Type The category to which the product belongs
Item MRP Maximum Retail Price of the product (list price)
Outlet Identifier Unique store ID
Outlet Estabilishment Year The year in which store was estabilished
Outlet Size The size of the store in terms of ground area covered
Outlet Location Type The type of city in which the store is located
Outlet Type Whether the outlet is just a grocery store or some sort of supermarket
Item Outlet Sales Sales of the product in the particular store. This is the outcome variable.

Table 1: Variables and their description for the BigMart dataset.

instance for commercialising new products, opening new stores or monitor the income performance of the
stores.

In this work we apply BAQRT to analyse data coming from BigMart. It is an international brand with
both free home delivery services and outlet store of food and grocery. Data scientists at BigMart created a
dataset containing sales for 1559 products in 10 different stores located in several cities. They also reported
many features related both to products and stores, in table 1 we provide a list of all the variables together
with a description. In particular, there are eleven predictors and a scalar response function that is the “Outlet
Sales”. Eight of the eleven predictors are categorical while the remaining are continuous. The main interest
consists in the identification of the variables that mostly influence the sales and if the relevance of these
features changes by considering the different quantiles of the response variable. Indeed, the tail behaviour
of the sales is also useful in stock management.

The variables considered in this example are a small subset of all the possible variables that could be
analysed by retail stores. The importance of the variables are however based on some hypothesis and there is
not any model that can be used both for sales prediction and monitoring tasks. This motivates the application
of our method to investigate the type of relations occurring between the predictors and the response variable.

In figure 1 we report the predictor importance for the confidence levels τ = (0.1,0.5,0.9). The first
two quantiles show similar variables importance ranking, in particular, the most relevant variables are “Item
MRP”, “Item Type”, “Item Visibility” and “Item Weight”. The first variable represents the price, its relevance
supports the fact that promotional offers makes the customers much more inclined to buy products. The
second one is the “Item Type” that represents the category to which the product belongs to. This finding
supports the idea that one of the main indicator of product’s sale is its utility, that is daily use products have
much more sales rate than others. The third one, the “Item Visibility”, confirms the fact that the position
of the products in the stores is fundamental for their sales. Finally, the last “Item Weight” supports the
hypothesis that lighter (and often smaller) products are easier to carry and so people are more inclined to
buy them even if they are not needed.
The higher quantile instead show a different situations for the predictors’ importance. Indeed, the “Item
Visibility” becomes the most relevant variable, while all the others have a quite similar importance.
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Fig. 1: Predictors’ importance for different quantiles. The bottom figure in the left column refers to the mean behaviour.
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