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Abstract In this paper we address the problem of estimating the parameters of high
dimensional regression models characterized by binary covariates. We suggest a
new procedure which combines particular clustering for the binary covariates and
group penalized regression for estimating the model parameters. The good perfor-
mance of the methodology is shown in a simulation study.

Abstract Questo lavoro affronta il tema della stima di modelli di regressione ad alta
dimensionalità con covariate binarie. In particolare, si propone un procedura di
stima per questa classe di modelli che combina tecniche di cluster analisi e modelli
di regressione penalizzata di gruppo. La metodologia proposta viene valutata con
uno studio di simulazione.
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1 Introduction

In many scientific fields of research, recent advances in technology have allowed to
gather data sets characterized by a very high number of variables. The sample size
of these data can be small compared to the number of variables and only a small
number of these variables can be relevant to the study. Moreover, in several con-
texts binary variables are present to express the presence or absence of particular
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elements or features. For this structure of the problem we would like to provide a
contribution in developing a procedure to select influential variables and estimate
model parameters. Several different methodologies have been suggested in litera-
ture for variable selection in high-dimensional models, among these penalized re-
gression models have gained popularity over the last few decades; see among others
[4, 7, 1, 11, 6, 2]. Penalized procedures are designed with the aim of both select-
ing the most relevant variables and estimating the parameters of the models. In a
general regression setting, models with continuous explanatory variables have been
extensively studied, while models with binary explanatory variables have received
much less attention.

The aim of this paper is to derive a new procedure to estimate high-dimensional
models by combining the class of penalized regression models with binary vari-
ables clustering techniques. We propose to estimate penalized regressions based on
the information obtained from the introduction of a grouping structure of covariates.
More specifically, we propose a two-step procedure: in the first step, we group the
covariates into non-overlapping clusters (or groups) using an approach able to deal
with the binary nature of the covariates; in the second step, we select the most rele-
vant clusters and covariates by using a penalized regression procedure in which the
information obtained in the clustering phase is embedded.

The paper is organized as follows. In Section 2 we review some variable selec-
tion procedures, for individual, for group and for bi-level selection; we then present
a new inferential procedure for high-dimensional regression models with binary co-
variates based on penalized regression models and clustering techniques. In Section
3 we conduct a simulation study to evaluate the performance of the new procedure.

2 Methodology

2.1 Model set-up

Le us consider the multiple linear regression model

yi = Xiβ + εi, i = 1, . . . ,n (1)

where Xi = (xi1, . . . ,xip)
T is a p-dimensional vector of explanatory variables (or

covariates), yi is the response value for the i-th observation, εi is the error term,
n is the sample size and β = (β1, . . . ,βp) is the vector of parameters. The vector
β is unknown and has to be inferred from the data. When the number of vari-
ables, p, is much larger than the sample size n the model is usually referred as a
high-dimensional regression model. If only a small number of variables affects the
response, the model results to be characterized by the sparsity condition [7]. To
estimate the vector of regression coefficients β we consider penalized regression
models and minimize the following function
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Q(β ) =
1
2n

(y−Xβ )T (y−Xβ )+P(β |λ ), (2)

where y = (y1, . . . ,yn)
T is the n×1 vector of response values and X = (X1, . . . ,Xn)

T

is the n× p design matrix. The function P(·) is defined as a penalty on the regres-
sion coefficient parameters β and λ is a tuning parameter. The most used methods
for choosing λ are cross-validation criteria or information criteria (see [9] among
others). A number of penalized regression methods have been proposed in litera-
ture; see among others [6]. They include procedures for individual variable selec-
tion, group variable selection and bi-level variable selection. The Least Absolute
Shrinkage Selection Operator (LASSO) proposed by [7] is one of the most famous
procedure for individual variable selection. If the main interest is in selecting rele-
vant groups of covariates and not individual ones, it is possible to take account of
a grouping structure among the covariates as in group penalized regression proce-
dures which include the group LASSO ([10]), the group Minimax Concave Penalty
method [6] and the group Smoothly Clipped Absolute Deviation [6]. If, on the other
hand, the focus is on selecting both the important groups of covariates as well as
variables within these groups, bi-level selection procedures can be considered as the
composite Minimax Concave Penalty ([1]), and the group exponential LASSO ([2]).
These selection procedures have been introduced to overcome some limitations of
the LASSO estimator and present a number of appealing properties in terms of
both estimation accuracy as well as variable selection properties. Although a large
amount of work has been done in the literature on the selection of continuous covari-
ates in the high-dimensional framework, less attention has been given to the binary
covariates case. To address the problem of estimating high-dimensional regression
models with binary covariates we develop a methodology based on combining clus-
tering techniques with penalized regression models. In this procedure a crucial step
is the selection of binary variables groups to be embedded into the penalized regres-
sion model. The group selection can lead to a more effective variable selection and
accurate predictions.

2.2 Estimating the parameters of the clustering structure
regression

For a given clustering structure, the model (1) can be specified as

y =
K

∑
k=1

X̃kβ̃k + ε,

where X̃k is the n× dk design matrix representing the dk covariates belonging to
the k-th cluster, β̃k = (βk1, . . . ,βkdk) ∈ Rdk is the vector of regression coefficients of
the k-th cluster and ε = (ε1, . . . ,εn) is the error vector. Let xi j be the value of X j
at the i-th observation. Assume that xi j = 1 if X j is present in the i-th observation
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and xi j = 0 otherwise, for i = 1, . . . ,n and j = 1, . . . , p. Let c j denote a latent cluster
label for X j, with c j = k if X j is allocated to the k-th cluster, k = 1, . . . ,K. The scope
of the clustering analysis in this context is to associate to each covariate X j a unique
label c j with j = 1, . . . , p.

Among the clustering techniques the most suitable for binary data include the ag-
glomerative hierarchical clustering methods with binary dissimilarity matrices, the
Bayesian non-parametric approach for binary data and the K-modes. Our purpose
is to exploit the use of clustering techniques to identify non-overlapping groups of
covariates. In order to estimate the grouping structure, in this paper we consider the
following clustering methods:

• The standard agglomerative hierarchical clustering algorithms produce a nested
sequence of clusters, which initially considers each observation as a single clus-
ter, then at each stage the two least dissimilar clusters are combined. The process
is repeated until only one cluster will contain all the observations. The dissimilar-
ity between clusters can be measured by linkage methods: average, complete and
single. Moreover, among the main distance measures between objects proposed
for binary data we consider the Jaccard and the Tanimoto distances; see [3].

• The Bayesian non-parametric approach, recently proposed by [8], assumes that
the data xi j are independent draws from a mixture of infinite Bernoulli distri-
butions whose parameters are distributed according to a Beta distribution. Clus-
tering of data is obtained by calculating the posterior probability of the latent
clusters labels c j for j = 1, . . . , p.

• The K-modes approach is a generalization of the K-means procedure suitable for
categorical data; see [5]. This approach has two key differences with the classi-
cal K-means. First, it assumes that the representative point of the clusters (also
known as centroid) is the modal value of a cluster. Second, the distance between
objects is the Hamming distance. K-modes tries to find a partition of the ob-
jects into K groups by minimizing the distance between each observation and the
group centroid.

We propose to estimate the model parameters by clustering the covariates according
to a procedure above described and then introducing a group penalty in the estimat-
ing function (2). More specifically, the procedure involves the following two-steps:

1. cluster the covariates into non-overlapping groups by using a clustering tech-
nique suitable for binary-data;

2. regress the response variable y on the set of grouped covariates using a penal-
ized regression procedure based on embedding the information gained from the
preliminary clustering.

3 A simulation study

We conduct a simulation study to evaluate the performance of the clustering effects
on the variable selection procedures. Among the several penalties that can be used
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here we focus on the composite Maximum Concave Penalty (cMCP), the group ex-
ponential LASSO (gel), the group Maximum Concave Penalty (gMCP), the group
LASSO (gLASSO) and the group Smoothly Clipped Absolute Deviation (gSCAD).
For each of these group penalties, we consider different clustering methods in order
to introduce a grouping structure into the model. For the purpose of this analysis,
we consider the hierarchical clustering with three linkage methods: complete, sin-
gle, average links, and three dissimilarity measures: Tanimoto and Jaccard distances.
Moreover, we consider the K-modes and the Bayesian non-parametric methods. We
compared group penalized regression models with the LASSO model. The sim-
ulation is based on the linear regression model yi = Xiβ + εi, i = 1, . . . ,n, where
εi ∼ N(0,σ2) as introduced in Equation 1. The standard deviation σ is assumed to
be 1 and covariates were generated from a Bernoulli distribution. We consider the
following setup: p = 200 covariates but just 4 of these covariates have non-zero co-
efficients. We randomly split the data into training and testing datasets. In this sim-
ulation the size of the data set is n = 100 and the size of the training set is 80. The
number of clusters has been fixed to 10 for all the clustering methods considered.
To evaluate the performance of the various group penalization methods combined
with different clustering procedures, we calculate some measures of prediction ac-
curacy and variable selection efficiency. In the simulation study, 1000 replicated
data sets were generated from the model. For each of these datasets, we compute
the Predictive Mean Square Error (PMSE), the Sensitivity (the ratio between the
number of selected important variables and the number of important variables), and
the Specificity (the ratio between the number of removed unimportant variables and
the number of unimportant variables). The results of this simulation are presented
in Tables 1 and 2. From Table 1 we can notice that all the penalized regression
procedures considered yield satisfactory results in terms of PMSE for all the clus-
tering techniques. In particular, the cMCP penalty provides almost the same good
results regardless of the clustering algorithm considered. Moreover, we can notice
the very good results achieved in terms of PMSE for the K-modes clustering and
the Bayesian non parametric clustering for all penalties considered. Among group
selection approaches, the gLASSO achieves the uppermost Sensitivity, especially
when we consider the hierarchical approach with Tanimoto distance combined with
average and single links. Both the bi-level selection penalties achieve low levels of
Sensitivity, but high levels of Specificity, as we expected. In Table 2 we report the
results for the LASSO model to allow a comparison with the results of group penal-
ized regressions. We notice that LASSO shows good PMSE and Specificity values
but a low value for Sensitivity. From this simulation study we can notice the good
performance of this approach which embedded clusters of binary covariates in a
group penalized regression model. Further simulation studies and analysis will be
developed to evaluate conditions for better performances of this new approach.
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Table 1 Simulation results on the performance of the clustering effects on the variable selection
procedures over 1000 replicates: Sensitivity, Specificity, PMSE (standard errors between brackets).

Penalties
Bi-level Group

Clustering
methods Measures cMCP gel gLASSO gMCP gSCAD

Hierarchical
average Jaccard

Sensitivity
0.210 0.140 0.275 0.064 0.255

(0.002) (0.002) (0.009) (0.003) (0.008)

Specificity
0.978 0.997 0.650 0.892 0.671

(0.001) (0.000) (0.010) (0.004) (0.009)

PMSE
1.659 1.855 2.046 2.058 2.035

(0.017) (0.018) (0.017) (0.017) (0.017)

Hierarchical
complete Jaccard

Sensitivity
0.212 0.104 0.404 0.002 0.008

(0.002) (0.005) (0.016) (0.001) (0.003)

Specificity
0.978 0.978 0.591 0.965 0.945

(0.001) (0.004) (0.014) (0.002) (0.003)

PMSE
1.662 2.045 2.121 2.083 2.060

(0.017) (0.022) (0.017) (0.019) (0.018)

Hierarchical
single Jaccard

Sensitivity
0.211 0.097 0.443 0.145 0.167

(0.002) (0.004) (0.015) (0.011) (0.011)

Specificity
0.977 0.974 0.546 0.848 0.829

(0.001) (0.004) (0.015) (0.011) (0.012)

PMSE
1.671 2.061 2.152 2.143 2.131

(0.018) (0.022) (0.018) (0.019) (0.019)

K-modes

Sensitivity
0.187 0.129 0.238 0.151 0.155

(0.002) (0.002) (0.008) (0.000) (0.001)

Specificity
0.985 0.999 0.888 0.997 0.994

(0.001) (0.000) (0.010) (0.000) (0.000)

PMSE
1.518 1.811 1.439 1.371 1.390

(0.017) (0.017) (0.015) (0.015) (0.015)

Penalties
Bi-level Group

Clustering
methods Measures cMCP gel gLASSO gMCP gSCAD

Hierarchical
average Tanimoto

Sensitivity
0.209 0.081 0.611 0.278 0.311

(0.002) (0.002) (0.015) (0.013) (0.013)

Specificity
0.977 0.994 0.422 0.766 0.737

(0.001) (0.002) (0.015) (0.013) (0.013)

PMSE
1.698 1.974 2.056 2.122 2.087

(0.018) (0.019) (0.017) (0.017) (0.017)

Hierarchical
complete Tanimoto

Sensitivity
0.211 0.101 0.203 0.087 0.145

(0.002) (0.002) (0.007) (0.002) (0.003)

Specificity
0.977 0.999 0.840 0.946 0.897

(0.001) (0.001) (0.007) (0.001) (0.003)

PMSE
1.664 1.893 1.957 1.898 1.916

(0.017) (0.017) (0.017) (0.016) (0.016)

Hierarchical
single Tanimoto

Sensitivity
0.208 0.090 0.696 0.456 0.448

(0.002) (0.004) (0.015) (0.016) (0.016)

Specificity
0.980 0.984 0.315 0.552 0.558

(0.001) (0.003) (0.014) (0.015) (0.015)

PMSE
1.672 2.033 2.101 2.163 2.147

(0.017) (0.021) (0.018) (0.018) (0.018)

BNP

Sensitivity
0.201 0.165 0.504 0.213 0.462

(0.002) (0.002) (0.008) (0.005) (0.008)

Specificity
0.979 0.998 0.642 0.877 0.674

(0.001) (0.000) (0.007) (0.003) (0.007)

PMSE
1.614 1.796 1.668 1.700 1.670

(0.017) (0.017) (0.016) (0.016) (0.016)

Table 2 Simulation results on the performance of the LASSO procedure over 1000 replicates:
Sensitivity, Specificity, PMSE (standard errors between brackets).

LASSO
Sensitivity Specificity PMSE

0.236 0.963 1.698
(0.002) (0.001) (0.017)
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