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Abstract Decision trees and their population counterparts are becoming promising alternatives to classical
linear regression techniques because of their superior ability to adapt to situations where the dependence
structure between the response and the covariates is highly nonlinear. Despite their popularity, those meth-
ods have been developed for classification and regression, while often the conditional mean would not be
enough when data strongly deviates from the Gaussian assumption. The approach proposed in this paper
instead considers an ensemble of nonparametric regression trees to model the conditional quantile at level
τ ∈ (0,1) of the response variable. Specifically, a flexible generalised additive model (GAM) is fitted to
each partition of the data that corresponds to a given leaf of the tree, allowing an easy interpretation of
the model parameters. Indeed, while the trees structure easily adapts to regions of the data having different
shapes and variability, the nonlinear part handles parsimoniously the local nonlinear structural relationship
of the quantile with the covariates. Unlike the most popular Bayesian approach (BART) that assumes a sum
of regression trees, quantile estimates are obtained by averaging the ensemble trees, thereby reducing their
variance. We develop a Bayesian procedure for fitting such models that effectively explores the space of
B–Spline functions of different orders that features the functional nonlinear relationship with the covari-
ates. The approach is particularly valuable when skewness, fat–tails, outliers, truncated and censored data,
and heteroskedasticity, can shadow the nature of the dependence between the variable of interest and the
covariates. We apply our model to a sample of US companies belonging to different sectors of the Standard
and Poor’s Composite Index and we provide an evaluation of the marginal contribution to the overall risk
of each individual institution.
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1 Introduction

In empirical studies, researchers are often interested in analysing the behaviour of a response variable given
the information on a set of covariates. The typical answer is to specify a linear regression model where
unknown parameters are estimated by OLS, thereby leading to the approximation of the mean function.
Although the mean describes the average response path as a function of the covariates, it provides little o no
information about the behaviour of the conditional distribution on the tails. As far as the entire distribution
is concerned, quantile regression methods adequately characterise the behaviour of the response variable
at different confidence levels providing a complete picture of the relationship with the covariates. More-
over, the quantile analysis is particularly suitable when the conditional distribution strongly deviates from
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the Gaussian assumption because it displays heterogeneity, asymmetry or fat–tails, see, e.g., [9]. Linear
quantile regression models have been extensively applied in different areas, such as, finance, engineering,
econometrics and environmetrics, as a direct approach to quantify the level of risk of a given event, so-
cial sciences and quantitative marketing to find appropriate and effective solutions to specific segments of
customers, and many other related fields see, [10]. However, despite their relevance and widespread applica-
tion in empirical studies, linear quantile regression models provide only a rough “first order” approximation
of the relationship between the τ–level quantile of the response variable and the covariates. Indeed, as first
recognised by [9], quantiles are linear functions only within a Gaussian world, thereby stimulating many re-
cent attempts to overcome this limitation. [6], for example, consider the copula–based approach to formalise
nonlinear and parametric conditional quantile relationships. Although quite flexible in fitting marginal data,
the copula approach forgets to consider nonlinear interactions among the covariates. Classification and re-
gression trees (CART, [4]) and their population counterparts ([3]) extensively use recursive partitioning
algorithms to perform nonparametric regression and variable selection. The attractive feature of decision
trees methods rely in their ability to partition the covariates space into disjoint hyperrectangles, thereby
improving the local fit. Therefore, CART adapt to situations where the dependence structure between the
response and the covariates is highly nonlinear. Despite their extensive use in a wide variety of fields, those
methods have been mainly developed for classification and mean regression. In this paper, we adopt the
Bayesian point of view and we extend the Bayesian regression trees approach of [7] to deal with condi-
tional quantiles estimation. Quantile estimation have been previously extended within the related context of
random forest by [11]. However, unlike random forests, the Bayesian approach to decision trees learning,
being likelihood–based, provides a complete inferential tool for model assessment and selection.

2 Quantile regression treed

The linear quantile regression framework for independent and identically distributed data models the con-
ditional τ–level quantile of the response variable Y , with τ ∈ (0,1), as a linear function of the vector of
dimension (q×1) of exogenous covariates X, i.e., Qτ (Y | X = x) = x′βββ , thereby avoiding any explicit as-
sumptions about the conditional distribution of Y |X= x. This is equivalent to assume an additive stochastic
error term ε for the conditional regression function µ (x) = x′βββ to be independent and identically distributed
with zero τ–th quantile, i.e, Qτ (ε | x) = 0, and constant variance. Following [12] and [2], the previous con-
dition is implicitly satisfied by assuming that the conditional distribution of the response variable Y follows
an Asymmetric Laplace (AL) distribution located at the true regression function µ (x), with constant scale
σ > 0 and shape parameter τ , i.e., ε ∼ AL(τ,µ (x) ,σ), with probability density function

AL(Y | X = x,σ ,τ) =
τ (1− τ)

σ
exp

{
− 1

σ
ρτ (Y −µτ (x))

}
1(−∞,∞) (Y ) , (1)

where µτ (x) is the quantile regression function and ρτ (u) = u
(
τ−1(−∞,0) (u)

)
denotes the quantile check

function at level τ . The quantile regression model postulated in equation (1) assumes the AL distribution as
a misspecified working likelihood that correctly identify the conditional quantile function.

Unlike the Bayesian Additive Regression Tree (BART) approach of [8] which considers a sum–of–trees
regression where each tree explains only a small portion of the total variance of the dependent variable Y ,
we model the conditional quantile of the response variable as a function of the covariates as the average of
an ensemble of m ∈ N+ regression treeds

Q (Y | X = x) = µτ (x) (2)

≈ 1
m

m

∑
l=1

T Ml
l (x) , (3)

where T
M j
j denotes the j–th treed of the ensemble, for j = 1,2, . . . ,m. In equation (3) each regression

trees is composed by a tree structure, denoted by T , and the parameters of the terminal nodes (also called
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leaves), denoted by M . Therefore, the j–th tree for j = 1,2, . . . ,m, denoted by T M
j , represents a specific

combination of tree structure T j and tree parameters M j, i.e., the regression parameters associated to its
terminal nodes.

3 Conditional Value–at–Risk estimation

In this section we apply the methodology introduced in the previously section to analyse the tail co–
movements between a financial institution j and the whole financial system k. To this aim we consider
the Conditional Value–at–Risk (CoVaR) recently introduced by [1], which is defined as the overall VaR of
an institution, conditional on another institution being in distress. To be more specific, let (Yj,Yk) be the bi-
variate random variable describing the return of institutions j and k, for k 6= j and assume (Yj,Yk) depend on

a vector of exogenous covariates X = (X1,X2, . . . ,Xq), then the Conditional Value–at–Risk
(

CoVaRx,τ
k| j

)
is

the Value–at–Risk of institution k conditional on Yj = VaRx,τ
j at the level τ ∈ (0,1), i.e., CoVaRx,τ

k| j satisfies
the following equation

P
(

Yk ≤ CoVaRx,τ
k| j | X = x,Yj = VaRx,τ

j

)
= τ, (1)

where VaRx,τ
j denotes the Value–at–Risk, VaRx,τ

j of institution j, i.e., the τ–th level conditional quantile of
the random variable Yj | X = x, defined as

P
(

Yj ≤ VaRx,τ
j | X = x

)
= τ. (2)

Note that both the VaR and the CoVaR corresponds to the τ–th quantiles of the conditional distribution of
Yj | {X = x} and Yk | {X = x,Yj = VaRx,τ

j }, respectively. Therefore, both the VaR and CoVaR equations can
be estimated using the Bayesian quantile regression treed models introduced in the previous section.

The financial data we utilise are taken from the Standard and Poor’s Composite Index (k) for the U.S
market, where different sectors ( j) are included. For both the institutions and for the whole system, we
consider microeconomics and macroeconomics variables, in order to take into account for individual infor-
mation and for global economic conditions respectively. Our empirical analysis is based on publicly traded
U.S. companies belonging to different sectors of the Standard and Poor’s Composite Index (S&P500) listed
in Table 1. The sectors considered are: Financials, Consumer Goods, Energy, Industrials, Technologies and
Utilities. Financials consists of banks, diversified financial services and consumer financial services. Daily
equity price data are converted to weekly log–returns (in percentage points) for the sample period from
January 2, 2004 to December 28, 2012, covering the recent global financial crisis. To control for the general
economic conditions we use observations of the following macroeconomic regressors as suggested by [1]
and [5]: the VIX index (VIX), measuring the model-free implied stock market volatility as evaluated by the
Chicago Board Options Exchange (CBOE), a short term liquidity spread (LIQSPR), computed as the differ-
ence between the 3-month collateral repo rate and the 3-months Treasury Bill rate, the weekly change in the
three-month Treasury Bill rate (3MTB) the change in the slope of the yield curve (TERMSPR), measured
by the difference of the 10-years Treasury rate and the 3-month Treasury Bill rate, the change in the credit
spread (CREDSPR) between 10-years BAA rated bonds and the 10-years Treasury rate and the weekly re-
turn of the Dow Jones US Real Estate Index (DJUSRE). To capture the individual firms’ characteristics, we
include observations from the following microeconomic regressors: leverage (LEV), calculated as the value
of total assets divided by total equity (both measured in book values), the market to book value (MK2BK),
defined as the ratio of the market value to the book value of total equity, the size (SIZE), defined by the
logarithmic transformation of the market value of total assets, and the maturity mismatch (MM), calculated
as short term debt net of cash divided by the total liabilities. To have a complete picture of the contributes
from individual and systemic risk we plot the estimated VaR and CoVaR for some of the assets listed in
Table 1 in Figure 1. Looking at individual risk assessment, it is clear that the VaR profiles are relatively
similar across institutions, displaying strong negative downside effects upon the occurrence of the recent
financial crises of 2008 and 2010 and the sovereign debt crisis of 2012. However, the analysis of the time
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Name Ticker Symbol Sector
CITIGROUP INC. C Financial
BANK OF AMERICA CORP. BAC Financial
COMERICA INC. CMA Financial
JPMORGAN CHASE & CO. JPM Financial
KEYCORP KEY Financial
GOLDMAN SACHS GROUP INC. GS Financial
MORGAN STANLEY MS Financial
MOODY’S CORP. MCO Financial
AMERICAN EXPRESS CO. AXP Financial
MCDONALD’S CORP. MCD Consumer
NIKE INC. NKE Consumer
CHEVRON CORP. CVX Energy
EXXON MOBIL CORP. XOM Energy
BOEING CO. BA Industrial
GENERAL ELECTRIC CO. GE Industrial
INTEL CORP. INTC Technology
ORACLE CORP. ORCL Technology
AMEREN CORPORATION. AEE Utilities
PUBLIC SERVICE ENTERPRISE INC. PEG Utilities

TABLE 1: List of companies included in empirical analysis. All listed companies belonged to the Standard and Poor’s Com-
posite Index (S&P500) at the start of the trading day of February 15, 2013.
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FIG. 1: Time series plot of the VaRx,τ
j (red line) and CoVaRx,τ

k| j (gray line) at the confidence level τ = 0.025, for the following
assets: top panel (financial): C (left), GS (right); second panel (consumer): MCD (left) and NKE (right); third panel (energy):
CVX (left), XOM (right); fourth panel (industrial): BA (left), GE (right); fifth panel (technology): INTC (left), ORCL (right);
bottom panel (utilities): AEE (left), PEG (right).
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series evolution of the marginal contribution to the systemic risk, measured by CoVaR, reveals different
behaviors for the considered assets. In particular, Citygroup (C), which belongs to the Financials, seems to
contribute more to the overall risk than other assets do.
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