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Sommario Glasso is one of the most used estimators for inferring genetic networks.
Despite its diffusion, there are several fields in applied research where the limi-
ts of detection of modern measurement technologies make the use of this estima-
tor theoretically unfounded, even when the assumption of a multivariate Gaussian
distribution is satisfied. In this paper we propose an extension to censored data.
Sommario Lo stimatore glasso è uno degli stimatori più diffusi per fare inferen-
za sulle reti generiche. Nonostante la sua diffusione, vi sono molti campi della ri-
cerca applicata dove i limiti di misurazione dei moderni strumenti di misurazione
rendono teoricamente infondato l’utilizzo di questo stimatore, anche quando l’as-
sunzione sulla distribuzione gaussiana multivariata è soddisfatta. In questo lavoro,
proponiamo un’estensione dello stimatore glasso ai dati censurati.
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1 Introduction

An important aim in genomics is to understand interactions among genes, characte-
rized by the regulation and synthesis of proteins under internal and external signals.
These relationships can be represented by a genetic network, i.e., a graph where
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nodes represent genes and edges describe the interactions among them. Gaussian
graphical models [3] have been widely used for reconstructing a genetic network
from expression data. The reason of such diffusion relies on the statistical proper-
ties of the multivariate Gaussian distribution which allow the topological structure
of a network to be related with the non-zero elements of the concentration matrix,
i.e., the inverse of the covariance matrix. Thus, the problem of network inferen-
ce can be recast as the problem of estimating a concentration matrix. The glasso
estimator [8] is a popular method for estimating a sparse concentration matrix, ba-
sed on the idea of adding an `1-penalty function to the likelihood function of the
multivariate Gaussian distribution.

Despite the widespread literature on the glasso estimator, there is a great number
of fields in applied research where modern measurement technologies make the use
of this graphical model theoretically unfounded, even when the assumption of a mul-
tivariate Gaussian distribution is satisfied. A first example of this is Reverse Trans-
cription quantitative Polymerase Chain Reaction (RT-qPCR), a popular technology
for gene expression profiling. This technique relies on fluorescence-based detection
of amplicon DNA and allows the kinetics of PCR amplification to be monitored in
real time, making it possible to quantify nucleic acids with extraordinary ease and
precision. The analysis of the raw RT-qPCR profiles is based on the cycle-threshold,
defined as the fractional cycle number in the log-linear region of PCR amplification
in which the reaction reaches fixed amounts of amplicon DNA. If a target is not
expressed or the amplification step fails, the threshold is not reached after the ma-
ximum number of cycles (limit of detection) and the corresponding cycle-threshold
is undetermined. For this reason, the resulting data is naturally right-censored data.
In this paper we propose an extension of the glasso estimator that takes into account
the censoring mechanism of the data explicitly.

2 The censored glasso estimator

Let XXX = (X1, . . . ,Xp)
> be a p-dimensional random vector. Graphical models allow

to represent the set of conditional independencies among these random variables by
a graph G = {V ,E }, where V is the set of nodes associated to XXX and E ⊆ V ×V
is the set of ordered pairs, called edges, representing the conditional dependen-
cies among the p random variables [3]. The Gaussian graphical model is a mem-
ber of this class of models based on the assumption that XXX follows a multivariate
Gaussian distribution with expected value µµµ = (µ1, . . . ,µp)

> and covariance matrix
Σ = (σhk). Denoting with Θ = (θhk) the concentration matrix, i.e., the inverse of the
covariance matrix, the density function of XXX can be written as follows

φ(xxx; µµµ,Θ) = (2π)−p/2|Θ |1/2 exp{−1/2(xxx−µµµ)>Θ(xxx−µµµ)}. (1)

As shown in [3], the off-diagonal elements of the concentration matrix are the para-
metric tools relating the pairwise Markov property to the factorization of the density
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(1). Formally, two random variables, say Xh and Xk, are conditionally independent
given all the remaining variables if and only if θhk is equal to zero. This result pro-
vides a simple way to relate the topological structure of the graph G to the pairwise
Markov property, i.e., the undirected edge (h,k) is an element of the edge set E
if and only if θhk 6= 0, consequently the graph specifying the factorization of the
density (1) is also called concentration graph.

Let XXX be a (partially) latent random vector with density function (1). In or-
der to include the censoring mechanism inside our framework, let us denote by
lll = (l1, . . . , lp)

> and uuu = (u1, . . . ,up)
>, with lh < uh for h = 1, . . . , p, the vectors

of known left and right censoring values. Thus, Xh is observed only if it is in-
side the interval [lh,uh] otherwise it is censored from below if Xh < lh or censo-
red from above if Xh > uh. Under this setting, a rigorous definition of the joint
distribution of the observed data can be obtained using the approach for missing
data with nonignorable mechanism [4]. This requires the specification of the di-
stribution of a p-dimensional random vector, denoted by R(XXX ; lll,uuu), used to en-
code the censoring patterns. Formally, the hth element of R(XXX ; lll,uuu) is defined
as R(Xh; lh,uh) = I(Xh > uh)− I(Xh < lh), where I(·) denotes the indicator func-
tion. By construction R(XXX ; lll,uuu) is a discrete random vector with support the set
{−1,0,1}p and probability function Pr{R(XXX ; lll,uuu) = rrr} =

∫
Drrr

φ(xxx; µµµ,Θ)dxxx, where
Drrr = {xxx ∈Rp : R(xxx; lll,uuu) = rrr}.

Given a censoring pattern, we can simplify our notation by partitioning the set
I = {1, . . . , p} into the sets o = {h ∈ I : rh = 0},c− = {h ∈ I : rh = −1} and
c+ = {h∈I : rh =+1} and, in the following of this paper, we shall use the conven-
tion that a vector indexed by a set of indices denotes the corresponding subvector.
For example, the subvector of observed elements in xxx is denoted by xxxo = (xh)h∈o
and, consequently, the observed data is the vector (xxx>o ,rrr

>)>. The joint probability
distribution of the observed data, denoted by ϕ(xxxo,rrr; µµµ,Θ), is obtained by integra-
ting XXXc+ and XXXc− out of the joint distribution of XXX and R(XXX ; lll,uuu), which can be
written as the product of the density function (1) and the conditional distribution of
R(XXX ; lll,uuu) given XXX = xxx. Formally

ϕ(xxxo,rrr; µµµ,Θ) =
∫

φ(xxxo,xxxc− ,xxxc+ ; µµµ,Θ)Pr{R(XXX ; lll,uuu) = rrr | XXX = xxx}dxxxc−dxxxc+ . (2)

Density (2) can be simplified by observing that Pr{R(XXX ; lll,uuu) = rrr | XXX = xxx} is equal
to one if the censoring pattern encoded in rrr is equal to the pattern observed in xxx,
otherwise it is equal to zero, i.e.,

Pr{R(XXX ; lll,uuu) = rrr | XXX = xxx}= I(xxxc− < lllc−)I(lllo ≤ xxxo ≤ uuuo)I(uuuc+ < xxxc+),

where the inequalities in the previous expressions are intended elementwise. From
this, ϕ(xxxo,rrr; µµµ,Θ) can be rewritten as

ϕ(xxxo,rrr; µµµ,Θ) =
∫ +∞

uuuc+

∫ lllc−

−∞

φ(xxxo,xxxc− ,xc+ ; µµµ,Θ)dxxxc−dxxxc+I(lllo ≤ xxxo ≤ uuuo)
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=
∫

Dc

φ(xxxo,xxxc; µµµ,Θ)dxxxcI(lllo ≤ xxxo ≤ uuuo), (3)

where Dc = (−∞, lllc−)× (uuuc+ ,+∞) and c = c−∪ c+. Suppose we have a sample of
size n; in order to simplify our notation the set of indices of the variables observed in
the ith observation is denoted by oi = {h ∈I : rih = 0}, while c−i = {h ∈I : rih =
−1} and c+i = {h ∈ I : rih = +1} denote the sets of indices associated to the left
and right-censored data, respectively. Denoting by rrri the realization of the random
vector R(XXX i; lll,uuu), the ith observed data is the vector (xxx>ioi

,rrr>i )
>. Using the density

function (3), the observed log-likelihood function can be written as

`(µµµ,Θ) =
n

∑
i=1

log
∫

Dci

φ(xxxioi ,xxxici ; µµµ,Θ)dxxxici =
n

∑
i=1

logϕ(xxxioi ,rrri; µµµ,Θ), (4)

where Dci = (−∞, lllc−i
)× (uuuc+i

,+∞) and ci = c−i ∪c+i . Although inference about the
parameters of this model can be carried out via the maximum likelihood method,
the application of this inferential procedure to real datasets is limited for three main
reasons. Firstly, the number of measured variables is often larger than the sample
size and this implies the non-existence of the maximum likelihood estimator even
when the dataset is fully observed. Secondly, even when the sample size is large
enough, the maximum likelihood estimator will exhibit a very high variance [5, 7].
Thirdly, empirical evidence suggests that gene networks or more general biochemi-
cal networks are not fully connected [2]. In terms of Gaussian graphical models this
evidence translates in the assumption that Θ has a sparse structure, i.e., only few θhk
are different from zero, which is not obtained by a direct (or indirect) maximization
of the observed log-likelihood function (4).

All that considered, we propose to estimate the parameters of the Gaussian gra-
phical model by generalizing the approach proposed in [8], i.e., by maximizing a
new objective function defined by adding a lasso-type penalty function to the obser-
ved log-likelihood (4). The resulting estimator, called censored glasso (cglasso), is
formally defined as

{µ̂µµρ ,Θ̂ ρ}= arg max
µµµ,Θ�0

1
n

n

∑
i=1

logϕ(xxxioi ,rrri; µµµ,Θ)−ρ ∑
h6=k
|θhk|. (5)

Like in the standard glasso estimator, the non-negative tuning parameter ρ is used to
control the amount of sparsity in the estimated concentration matrix Θ̂ ρ =(θ̂

ρ

hk) and,
consequently, in the corresponding estimated concentration graph Ĝ ρ = {V , Ê ρ},
where Ê ρ = {(h,k) : θ̂

ρ

hk 6= 0}. When ρ is large enough, some θ̂
ρ

hk are shrunken to
zero resulting in the removal of the corresponding link in Ĝ ρ ; on the other hand,
when ρ is equal to zero and the sample size is large enough the estimator Θ̂ ρ coin-
cides with the maximum likelihood estimator of the concentration matrix, which
implies a fully connected estimated concentration graph.
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Tabella 1 Results of the simulation study: for each measure used to evaluate the behaviour of the
considered methods we report average values and standard deviation between parentheses

Model minρ MSE(µ̂µµρ ) minρ MSE(Θ̂ ρ ) AUC
H/p cglasso MissGlasso cglasso glasso MissGlasso cglasso glasso MissGlasso

0.5 0.47 14.50 8.76 103.35 96.75 0.60 0.46 0.37
(0.11) (0.69) (0.64) (14.43) (16.01) (0.02) (0.02) (0.02)

0.7 0.48 21.00 10.11 139.76 131.99 0.58 0.39 0.25
(0.10) (0.76) (0.84) (15.94) (18.81) (0.02) (0.02) (0.02)

3 Simulation study

By a simulation study, we compare our proposed estimator with MissGlasso [6],
which performs `1−penalised estimation under the assumption that the censored
data are missing at random, and with the glasso estimator [1], where the empirical
covariance matrix is calculated by imputing the missing values with the limit of
detection. These estimators are evaluated in terms of both recovering the structure
of the true concentration graph and the mean squared error.

Our study is based on a multivariate Gaussian distribution with p= 50 and sparse
concentration matrix simulated by a random structure, i.e., the probability of obser-
ving a link between two nodes is 0.05. To simulate a censored sample we use the
following procedure: we set the mean µµµ in such a way that µh = 40 for the H censo-
red variables, i.e. Pr{R(Xh;−∞,40)=+1}= 0.50, while for the remaining variables
µh is sampled from a uniform distribution on the interval [10;35]. The quantity H is
used to evaluate the effects of the number of censored variables on the behaviour of
the considered estimators. In particular, we consider H ∈ {25,35}. At this point, we
simulate a sample from the latent p-variate Gaussian distribution and treat all values
greater than 40 as censored. We use the previous procedure to simulate 100 samples
and in each simulation we compute the coefficients path using cglasso, MissGlasso
and glasso. Each path is computed using an equally spaced sequence of 30 ρ-values.
Table 1 reports the summary statistics minρ MSE(µ̂µµρ), minρ MSE(Θ̂ ρ) and the Area
Under the Curve (AUC) for network discovery.

The results on the AUC suggest that cglasso can be used as an efficient tool
for recovering the structure of the true concentration matrix. The distribution of the
minimum value of the mean squared errors shows that, not only our estimator is able
to recover the structure of the graph but also outperforms the competitors in terms
of both estimation of µµµ and Θ . We did not report minρ MSE(µ̂µµρ) for glasso since
this method does not allow to estimate the parameter µµµ . Figure 1 shows a graphical
representation of the results obtained with H = 25.
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Figura 1 Results of the simulation study with H = 25. Panel (a) shows the ROC curves; Panel (b)
shows the box-plots of the behaviour of quantity minρ MSE(Θ̂ ρ ) for the considered estimators.

4 Conclusions

In this paper, we have proposed an extension of the glasso estimator to multivaria-
te censored data. An extensive simulation study showed that the proposed estima-
tor overcomes the existing estimators both in terms of parameter estimation and of
network recovery.
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