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Abstract The estimation of multivariate location and scatter is the cornerstone of
the classical multivariate statistical methods widely used in portfolio selection prob-
lems. However, they are not robust. We propose to use an alternative non-parametric
approach based on the weighted LP depth as robust location and scatter estimator in
order to deal with extreme events in asset returns analysis. We first review weighted
LP depth along with its main properties and then discuss its application to portfolio
selection through a small simulation study.
Abstract Le depth functions La stima dei parametri di location e dispersione
rappresentano la pietra miliare dei classici metodi statistici multivariati utilizzati
nella selezione di portafoglio. Tuttavia questi metodi non sono robusti. Proponi-
amo, quindi, l’utilizzo di un metodo non parametrico basato sulla weighted LP

depth come stimatore robusto di location e dispersione nel caso di eventi estremi
nell’analisi dei rendimenti. Forniamo la definizione e le proprietlla weighted LP

depth, e mostriamo la sua applicabilitla selezione di portafoglio attraverso uno stu-
dio di simulazione.
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1 Introduction

Portfolio selection concerns how to allocate capital over a number of assets to max-
imize the “return” on the investment and minimizing the “risk”. The first mathe-
matical model for portfolio selection was introduced by Markowitz (1952). In this
model, the “return” on a portfolio is measured by the expected value of the random
portfolio return, and the associated “risk” is given by the variance of the portfolio
return. This mean-variance model has had a great impact on the economic modelling
of financial markets and represents the milestone of the modern portfolio theory. De-
spite the success of the mean-variance model, its solutions are often very sensitive
to perturbations in the parameters of the problem. Indeed, when the sample distribu-
tion deviates even slightly from the assumed distribution, the efficiency of classical
estimators may be drastically reduced. Robust estimators, on the other hand, are not
as efficient as maximum likelihood estimators when the underlying model is correct,
but their properties are not as sensitive to deviations from the assumed distribution.
In order to reduce the sensitivity of the Markowitz-optimal several techniques were
proposed in the literature. Among the proposals we recall Vaz-de Melo and Ca-
mara (2005) who used the M-estimators, Perret-Gentil and Victoria-Feser (2005)
who adopted a translated biweight S-estimator, while Welsch and Zhou (2007) used
the minimum covariance determinant estimator and the winsorization. DeMiguel
and Nogales (2009) proposed a class of policies that are constructed using both on
M- and S-estimators. For an overview on the robust methods used for in portfolio
selection we refer to Fabozzi, Huang and Zhou (2010).

In recent years, attention on portfolio selection strategies based on non-parametric
and semi-parametric techniques have been also shown to exist (see e.g., Ben Salah
et al., 2018 and Iorio et al., 2018)

Despite the growing interest on non-parametric and/or robust methods for portfo-
lio selection, to the best of authors knowledge there is no literature on the exploita-
tion of data depth functions to this purpose. Hence, in this paper we propose to
adopt a non-parametric approach based on the weighted Lp depth to perform robust
location and scatter estimation in financial applications.

In the following we first recall the definition of data depth function and review the
notion of Lp depth, then the results of a small simulation are offered to the reader.

2 Data depth concept

Many statistical techniques in multivariate analysis assume normality of the dis-
tribution of the data. This assumption is often disputable and thus other, non-
parametric, approaches are worth to be considered. One is based on the so called
data depth, which is a way to measure the depth or outlyingness of a given point
with respect to a multivariate data cloud or its underlying distribution. This concept
was originally introduced to generalize the concepts of the median and the quantiles
to a multivariate framework. The principle is very simple. For a distribution F in Rd ,
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a depth function, denoted by D(x;F), provides a certer-outward ordering of points
in x ∈ Rd .

Zuo and Serfling (2000) provided general notions of depth function on Rd

and presented four reasonable properties that a depth function (bounded and non-
negative) should possess, that is:

P1 Affine invariance. The depth of a point x ∈ Rd should not be dependent on the
underlying coordinate system or, in particular, on the scales of the underlying
measurements.

P2 Maximality at center. For a distribution having a uniquely defined “center”,
the depth function should attain maximum value at this center.

P3 Monotonicity relative to deepest point. As a point x ∈ Rd moves away from
the “deepest point” (the point at which the depth function attains maximum
value) along any fixed ray through the center, the depth at x should decrease
monotonically.

P4 Vanishing at infinity. The depth of a point x should approach zero as ‖x‖ ap-
proaches infinity.

Let P denote the class of distributions on Borel sets on Rd , while FX denote the
distribution of a given random vector X belonging to the class of random vectors X

There are several notions of data depth in the literature.

Definition 1. Let the mapping D(·, ·) : Rd ×P → R+ satisfy P1, P2, P3 and P4.
That is, assume:

D(Ax+b,FAX+b) = D(x,FX ) holds for any random vector X ∈ Rd and any
d×d nonsingular matrix A, and any d dimensional vector b.

(i)

D
(
θ ,F) = supx∈Rd D(x,F) holds for any F ∈P having centre θ .(ii)

For any F ∈P having deepest point θ , D(x,F) ≤ D(θ +α(x?θ),F) holds
for α ∈ [0,1]; and

(iii)

D(x,F)→ 0 as ‖x‖→ ∞, for each F ∈P .(iv)

Then D(·;F) is called a statistical depth function.
The sample version of a depth function D(·;F) is denoted by D(·;Fn), where F

is replaced with an empirical measure Fn, computed on a sample Xn = {x1, . . . ,xn}.
There are several notions of data depth function available in the literature. The

halfspace, simplicial, Mahalanobis and Lp depths are some of the most popular ones.
The notion of data depth has been also extended to the functional space (see e.g.,
Lopez-Pintado and Romo, 2009) and on the spheres (see e.g., Liu and Singh, 1992
and Pandolfo et al., 2017).
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In this paper, we adopt the notion of weighted Lp depth introduced by Zuo (2004)
because of its ease of computation and (local and global) robustness properties.

2.1 The weighted Lp depth

Zuo and Serfling (2000) defined the Lp depth based on the Lp-norm. Different dis-
tances (norms) were used with equal weights. However, in practice, the importance
(weight, cost, penalty, or incentive) may not be the same for different distances
(norms). This motivates to adopt this notion of depth, that is define as follows:

WLpD(x;F) =
1

1+Ew
(
‖x−X‖p

) ,
where w is a weight function on [0,1), X ∼ F and ‖·‖ denotes the Lp-norm (when
p = 2 we have the Euclidean norm), w is assumed to be non-decreasing and contin-
uous on [0,∞). The weighted Lp depth possesses some desirable properties of depth
functions. It is translation invariant (can be affine invariant for p = 2 under some
modification), maximized at the center of a (centrally) symmetric distribution for
convex w, decreasing when a point moves along a ray stemming from the deepest
point, and vanishing at infinity. For more related discussions see Zuo and Serfling
(2000).

The weighted Lp depth-induced medians (multivariate location estimator) are
globally robust with the highest breakdown point for any reasonable estimator. The
weighted Lp medians are also locally robust with bounded influence functions for
suitable weight functions. Unlike other existing depth functions and multivariate
medians, the weighted Lp depth and medians are computationally feasible and easy
to calculate in high dimensions. The price to be paid is the lack of affine invariance.

3 Simulation study

In this section, we present a small Montecarlo simulation to investigate the per-
formance of the weighted Lp depth-based estimators of the mean and covariance
matrix, for both contaminated and non-contaminated simulated data.

Following Toma and Leoni-Aubin (2015), and DeMiguel and Nogales (2009), we
use simulations to generate asset returns data following a distribution that deviates
slightly from the normal distribution. Specifically, we considered the multivariate
normal distribution F ∼ N (µF ,ΣF) with mean µF = 0 and ΣF a N×N covariance
matrix with variances equal to 1 and covariances all equal to 0.2, with N denoting
the total number of assets. We generated samples of size T = 100 according to the
following contaminated model:
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Fε = (1− ε)F + εG, (1)

where G is a contaminating distribution and ε is the fraction of the data that fol-
lows the contaminating distribution G ∼ N (µG,ΣG) with muG = −4 and ΣG =
4ΣF . We considered N ∈ {2,5,10,20} and three different contamination levels
ε ∈ {0%,2.5%,5%} to investigate how the estimates change when the asset returns
deviate from normality.

The estimates of location and scatter were obtained through the weighted L2,
with all the observations having same weight. More in detail, in case of location, the
estimator is defined as:

L(F) =
∫

xw1
(
L2D(x,F)

)
dF (x)/

∫
w1
(
L2D(x,F)

)
dF (x) ,

then a weighted L2 depth scatter estimator is defined as

S (F) =

∫
(x−L(F))(x−L(F))T w2 (D(x,F))dF (x)∫

w2 (D(x,F))dF (x)

where w2 are suitable weight function that can be different from w1.
For each setting, we generated R = 250 samples and for each sample we com-

puted the depth estimates of location and scatter. The performances are evaluated
through the empirical mean squared error (EMSE) given by

EMSE =
1
R

R

∑
i=1

∥∥θ̂i−θ0
∥∥2

where θ0 = (µF ,vech(ΣF))
′ and θ̂i =

(
µ̂i,vech

(
Σ̂i
))′

is an estimate corresponding
to the i-th sample, while vech(Σ) is “the vector half”, namely the N(N + 1)/2-
dimensional column vector obtained by stacking the columns of the lower triangle
of Σ , including the diagonal, one below the other.

Results are presented in Table 1. The mean squared errors generally increase
along with the number of assets (i.e., the sample size). However, for low dimensions
(N = 2 and 5), the L2 depth-based method estimates appear to be less affected by
the contamination.

4 Final comments

In this paper we suggest to exploit the use of the weighted Lp depth function to per-
form robust estimation in financial settings. The very first results obtained through
simulations are promising. Further research are needed to determine how to assign
(depth-)weights to the observations, and to investigate the behaviour in real data
applications.
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Table 1: Empirical mean squared errors of WL2 depth estimates.

N ε

0% 2.5% 5%

2 0.10 0.12 0.48
5 0.71 0.95 2.57
10 2.89 3.76 9.46
20 9.23 12.58 32.50
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