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Abstract Topological Data Analysis (TDA) is a recent and growing branch of statis-
tics devoted to the study of the shape of the data. Motivated by the complexity of the
object summarizing the topology of data, we introduce a new topological kernel that
allows to extend the TDA toolbox to supervised learning. Exploiting the geodesic
structure of the space of Persistence Diagrams, we define a geodesic kernel for Per-
sistence Diagrams, we characterize it, and we show with an application that, despite
not being positive semi–definite, it can be successfully used in regression tasks.
Abstract Topological Data Analysis (TDA) è una branca della statistica volta allo
studio della “forma” dei dati. Data la complessità delle summaries topologiche,
introduciamo una nuova famiglia di kernels per estendere TDA a problemi di ap-
prendimento supervisionato. Sfruttando la geodesica dello spazio delle summaries
topologiche, in questo lavoro definiamo un kernel geodesico, lo caratterizziamo e
mostriamo con un applicazione le sue performance in un problema di regressione.
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1 Introduction to Topological Data Analysis (TDA)

Topological Data Analysis TDA is a new area of research in statistics consisting of
techniques aimed at recovering the topological structure of data [1, 3]. The interest
in the topological structure of data stems from the immediate interpretation of the
characterization provided by topological invariants: 0-dimensional features repre-
sent connected components, 1-dimensional features represent loops, 2-dimensional
are voids and so on. These are all quantity of interest in statistical analysis, as for
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example connected components correspond to clusters [2] and loops represent peri-
odic structures [7].

If data come in the form of point–cloud Xn = {X1, . . . ,Xn}, however, it is not
possible to compute such invariants directly. A point–cloud Xn, in fact, has a trivial
topological structure, as it is composed of as many connected components as there
are observations and no higher dimensional features. TDA provides a framework
for estimating the topological structure of Xn by enriching it, encoding data into a
filtration. The most common way to do so is to grow each observation point Xi into
a ball

B(Xi,ε) =
{

x
∣∣dX(x,Xi)≤ ε

}
,

of fixed radius ε .
As the resolution ε changes, the topological structure of the cover

Xε
n =

n⋃
i=1

B(Xi,ε),

changes as well. When ε is very small, Xε
n is topologically equivalent to Xn; as ε

grows, however, balls of the cover start to intersect, “giving birth” to loops, voids
and other topologically interesting structures. At some point, when connected com-
ponents merge, loops are filled and so on, these structures start to “die”. Eventually
when ε reaches the diameter of the data Xn, Xε

n is topologically equivalent to a point
ball, and again retains no information. The “lifetime” of the generic i-th feature can
be represented by a “birth–time” bi representing the first value ε for which the i-th
feature appears in the data, and a “death–time” di corresponding to when the feature
disappear, i.e. the first value ε for which Xε

n does not retain the i-th feature anymore.
Birth and death times for all the features in the cover are then summarized in the
Persistence Diagram D = {(bi,di), i = 1, . . .m}.

Points that are close to the diagonal have a “short life”, in the sense that the fea-
tures they represent appear and disappear almost immediately and hence may be
neglected; on the other hand the “longer” a feature lives, the more important it is in
characterizing the structure of Xn.

The space of Persistence Diagram D is a metric space when endowed with the
Wasserstein distance.

Definition 1 (Wasserstein Distance between Persistence Diagrams). Given a met-
ric d, called ground distance, the Wasserstein distance between two persistence di-
agrams D and D′ is defined as

Wd,p(D,D′) =

[
inf

γ
∑
x∈D

d
(
x,γ(x)

)p

] 1
p

,

where the infimum is taken over all bijections γ : D 7→ D′.
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Depending on the choice of the ground distance d, Definition 1 defines a family
of metrics; we focus on the L2–norm, especially in the case p = 2, for which [10]
proved that WL2,2 is a geodesic on the space of persistence diagrams.

1.1 Geodesic Topological Kernels

As most statistical learning tools are defined for inner product spaces, the metric
structure of the space of persistence diagrams may be limiting, we thus turn to a
kernel approach. Roughly speaking a kernel K on a space M is a symmetric binary
function K : M ×M 7→ R+ which represent a measure of similarity between two
elements of M . As every kernel is associated to an inner product space [9], we
can use them to implicitely define an inner product space in which it is possible to
perform most statistical tasks, from classification to testing, through regression.

Previous attempts in this direction (such as [8]) built kernels on persistence dia-
grams by considering each point of the diagram individually, thus loosing the struc-
ture of the object. In order to consider the diagram as a whole, we propose a kernel
which, being based on the Wasserstein distance, preserves information about how
points in the diagram are related to each others.

One popular family of kernels for a geodesic metric space (X,d) is the exponen-
tial kernel

k(x,y) = exp
{

d(x,y)p/h
}

p,h > 0

where h > 0 is the bandwidth parameter; for p = 1 this is the Laplacian kernel and
for p = 2 this is the Gaussian kernel. It is straightforward to use this class to define
a Topological kernel to be used for statistical learning.

Definition 2 (Geodesic Topological Kernel). Let D be the space of persistence
diagrams, and let h > 0, then the Geodesic Gaussian Topological (GGT) kernel
KGG : D×D 7→ R+ is defined as

KGG(D,D′) = exp
{

1
h

WL2,2(D,D′)2
}

∀D,D′ ∈D .

Analogously, the Geodesic Laplacian Topological Kernel (GLT), KGL is defined
as:

KGL(D,D′) = exp
{

1
h

WL2,2(D,D′)
}

∀D,D′ ∈D .

As opposed to their euclidean counterparts, the Geodesic Laplacian and Gaussian
kernels are not necessarily positive definite; as shown in [4], in fact, a Geodesic
Gaussian kernel on a metric space is positive definite only if the space is flat, but
this is not the case for the space of Persistence Diagram, which has been proved to
be curved [10].
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2 Application - Fullerenes

Buckyballs fullerenes are spherical pure carbon molecules whose main trait is that
atoms’ linkage can form either pentagons or hexagons. We will show that our topo-
logical kernel can be exploited to predict the Total Strain Energy (measured in Ev)
of a molecule from the shape of the molecule, as our Topological Kernel allows us
to use Persistence Diagrams as covariates. given a sample {X1, . . . ,Xn} of Fullerenes
we model their Total Strain Energy, Y as a function of their Persistence Diagrams
{D1, . . . ,Dn}:

Yi = m(Di)+ εi

where εi is the usual 0–mean random error. As in standard nonparametric re-
gression, we can estimate the regression function m(·) with the Nadaraya–Watson
estimator[5], which does not require a positive definite kernel.

Moreover, in order to take into account the group structure naturally induced by
the isomers, we also considered a model with a fixed group intercept, i.e:

Yi j = α j +m(Di j)+ εi j,

where Di j denotes the persistence diagram of the ith isomer of the jth molecule.
We fit the resulting partially linear model using Robinson’s trimmed estimator,
as detailed in [6]. We fit the models using data from n = 535 molecules of 10
different types of Fullerenes. For each molecule, the data (freely available at
http://www.nanotube.msu.edu/fullerene/fullerene-isomers.html consists of the coor-
dinates of the atoms taken from Yoshida’s Fullerene Library and then re–optimized
with a Dreiding–like forcefield. We focus on features of dimension 1, which recover
the structure of the molecule; as we can see from Figure 1, loops in the diagrams
are, in fact, clearly clustered around two centers, which represent the pentagons and
the hexagons formed by the carbon atoms. Interestingly enough, the Wasserstein
distance and, hence, both the geodesic kernels, fully recover the class structure in-
duced by the isomers, as we can see in Figure 3.

Geodesic Gaussian Kernel Geodesic Laplacian Kernel
Nonparametric regression 339.89 342.14
Semiparametric regression 1049.02 331.04

Table 1 Residual Sum of Squares.

After choosing the bandwidth h via Leave–One–Out cross validation, we com-
pare the different models in terms of Residual Sum of Squares (RSS). As we can
see from Table 1, the two kernels yield similar results when used in a fully nonpara-
metric estimator, while the Laplacian kernel performs better when adding the group
intercept to the model. This can be understood by looking at the kernel matrices
(Figure 3); the Gaussian Kernel has a sharper block structure than the Laplace Ker-
nel, which makes it better at discriminating the 10 molecule classes. However, when
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Fig. 1 Topological configurations of some fullerenes (top) and corresponding persistence diagrams
(bottom). From left to right: C38(C2v), C40(C1), C44(C1), C52(C2), C90(C1).
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Fig. 2 Energies for the 10 different classes of isomers. It is worth noticing that Fullerenes with
higher numbers of atoms do not necessarily have higher energy.
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Fig. 3 Kernel Matrix for the Geodesic Gaussian Kernel (left), Geodesic Laplacian Kernel (center),
Hierarchical Clustering built from the Wasserstein distance with complete linkage (right). Colors
represent the different isomer classes as shown in Figure 2.
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the group structure is taken into account by the model itself, this clustered structure
leads to worse prediction.
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Fig. 4 Observed vs fitted plot for the fully nonparametric model fitted with the Geodesic Gaussian
(left), Geodesic Laplacian (center) and the Persistence Scale Space kernel (right). Colors represent
the different isomer classes as shown in Figure 2.

Finally, we compare the performance of our geodesic kernels with the Persistence
Scale Space kernel KPSS; as we can clearly see from the fitted-vs-observed plots in
Figure 4, the positive definiteness of the PSS kernel does not result in more accurate
prediction, as both KGG and KLG outperform it.
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