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Sommario We introduce a dynamic model to deal with uncertainty in complex epidemiological processes.
Our proposal is based on the Dynamic Bayesian Networks formalism, where each node is associated a
random variable, whose value specifies the state of an individual from a given population.
Sommario Si introduce un modello dinamico per gestire l’incertezza nei processi epidemiologici com-
plessi. La proposta presentata si basa sul formalismo delle Reti Bayesiane dinamiche, in cui ciascun no-
do corrisponde ad una variable aleatoria, il cui valore definisce lo stato di un individuo in una data
popolazione.
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1 Introduction

Deterministic epidemiological models for the propagation of an infectious disease on a given population
were first introduced by Kermack and McKendrick [5]. We propose a graphical implementation of a simple
SIR model, to account for uncertainty in the propagation process. This is carried out via repeated simulations
from what we call an almost-dynamic Bayesian network, whose pattern of mutual conditional relevances
evolves with time.
Basic concepts on the SIR model and Dynamic Bayesian Networks are introduced in Sec. 2.1 and 2.2, re-
spectively. Our proposal is sketched in Sec. 2.3. Some results, remarks and possible extensions are discussed
in Sec. 3.
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2 Methods

2.1 Deterministic Epidemiological Models

Infectious disease models are based on ordinary differential equations (ODEs). Each equation is associa-
ted with a single layer of the population, that is thus partitioned into homogeneous compartments. As an
example, consider the well-known SIR model [5], where a given population is constituted by three mutually
exclusive and exhaustive components: susceptible (S), infectious (I) and recovered (R), to some infectious
disease. At any time t, t ≥ 0, people in S may acquire the disease, according to rate λ (t), and enter compart-
ment I, where they spend γ−1 units of time on average, before they move to R; see Fig. 1. The rate λ (t) is
called force of infection and is often defined as

λ (t) = τc
I(t)
N(t)

, (1)

where c > 0 is the average number of contacts per individual per unit of time, E.g. per day, resulting in
an infection according to τ ∈ [0,1], transmissibility parameter, and I(t)/N(t) is the proportion of infectious
individuals in the population, also called the infection prevalence, at t. If the population is stratified into
k homogeneous classes, that specify different behavior among components, λ (t) ∈ Rk is derived from the
product of τ and contact matrix C ∈Rk×k, multiplied by vector Ik(t)/Nk(t)∈Rk, whose elements correspond
to the proportion of infectious individuals in each class.

γ is called recovery rate. ODEs describe the flows across compartments. At each time step, S(t), I(t) and
R(t) report the number of individuals in each homogeneous component of the population, assumed constant,
i.e. ∂S(t)

∂ t + ∂ I(t)
∂ t + ∂R(t)

∂ t = 0, for all t ≥ 0. No demographic dynamics (births, deaths, ageing of the population,
etc.) are considered by a simple SIR model, whose flow diagram is depicted in Fig. 1. Also, by definition
individuals are assumed to acquire lifelong immunity to the disease considered, once recovered. Thanks to its
simple parametrization, the SIR model was applied in a number of works, E.g., [4]. Particularly, the related
set of assumptions it applies to short-termed diseases, where dynamics strictly related to the population may
be neglected, as well as total or partial waning of the immunity conferred by an infection.

When an infectious individual is introduced in a fully susceptible population, the number of secondary
cases she produces in a unit of time is called basic reproduction number [5], denoted as R0. It may be easily
proved that in an SIR model, it corresponds to R0 = τcγ−1 (see, E.g., [1]).

Uncertainty and sensitivity analysis of deterministic epidemiological models is usually performed follo-
wing what we call a second-order approach: each parameter value is varied within some range according
to some distribution of uncertainty, either singularly or simultaneously. Stochastic approaches were also
proposed, dating back to the Reed-Frost model, in 1928 (see [2] for a survey), to deal with uncertainty in
such propagation processes. In Sec. 2.3, we propose a dynamic network model, that accounts for uncertainty

Figura 1 Flow diagram of a
simple SIR model.
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both in the parameters and in the pattern of contacts of any individual from the population. This way, while
homogeneity of each compartment results in the parametrization of a collection of conditional probability
tables, corresponding to transition matrices, the topology of the network increases (or decreases) risks at
each time step. Our proposal is based on a graphical dynamic implementation of an SIR model. Our propo-
sal is alternative to both existing epidemiological stochastic approaches, as it accounts for individual risks,
and to the so-called individual based modeling [3], whose assumptions differ from those of an SIR.

2.2 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are used to represent the joint probability distribution of a (large)
collection of random variables V = {X0, . . . ,Xn}, by a graph. Bold letters are used to denote sets of random
variables. PGMs exploit conditional independence assumptions among pairs of random variables (in a one-
to-one correspondence with the nodes of the graph) to reduce inferential complexity.

Nodes are connected by arcs (−) in an undirected graph, while edges (→) are used to induce an ordering
among the elements of V in a directed graph. We write Ad j(X) to denote the set of nodes adjacent to X in
any graph, irrespective of their direction. Let X and Y be any two adjacent nodes in a directed graph, if there
is an outgoing edge from X into Y , X is called a parent of Y , whereas Y is a child of X . Pa(X) and Ch(X)
denote, respectively, the parents and children set of node X ∈ V. Arcs are denoted as ((X ,Y )), while edges
read (X ,Y ); i.e. let E be the set of links in the graph, ((X ,Y )) ∈ E implies X ∈ Ad j(Y ) and Y ∈ Ad j(X),
while (X ,Y ) ∈ E implies X ∈ Pa(Y ), Y ∈Ch(X), for any pair X ,Y ∈ V. Also, let dX = |Pa(X)| denote the
in-degree of node X , i.e. cardinality of its parents set.

Bayesian networks are PGMs whose graphical component is an acyclic directed graph G = (V,E). A
Bayesian network is specified by the pair (G ,P), where P is a strictly positive joint probability mass function
over V. By the Markov condition, for a given ordering in V, each node is independent of its non-descendants
in the graph, given its parents. It follows P may be equivalently represented by a collection of n+ 1 con-
ditional probability tables (CPTs), whose columns correspond to distinct configurations of the parents of a
node.

Dynamic Bayesian Networks (DBNs, [6]) are sequences of Bayesian networks, whose structure and/or
parametrization change with time. In a DBN, conditioning always extends to each node’s previous state, and
possibly its parents’. As a result, the joint PMF at time t corresponds:

P(X t+1
0 = xt+1

0 , . . . ,X t+1
n = xt+1

n ) =
n

∏
i=0

P
(
X t+1 = xt+1

i |X
t = xt

i ,Pat+1(Xi) = pat+1(Xi),Pat(Xi) = pat(Xi)
)

(2)
where each configuration (X t

0 = xt
0, . . . ,X

t
n = xt

n) belongs to product sample space ΩV = ×n
i=′ΩXi , and

Pat(Xi) = pat(Xi) ∈ ×X j∈Pat (Xi)ΩX j is consistent with the first, t ≥ 0. For a given event xt ∈ ΩX∈X, we
write P(Xt = xt) = P(xt) to simplify notation.

In graph theory, a population may be described by a network, whose nodes correspond to units, i.e.
individuals, whereas in PGMs, nodes are random variables. In next section, we will introduce a simplified
DBN whose nodes represent individuals. Each node X is associated a three-valued random variable, whose
states, xS,xI and xR, indicate her location in an SIR model.
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2.3 Dynamic Probabilistic Modeling of an SIR Model

Let Bt = (G t ,Pt) denote a graphical model at any time t ≥ 0. In our formalism the graphical component is
partially directed: with time, arcs may be changed into edges, and vice versa. Although conditioning ought
to consider the whole adjacency set of each node, say X , as for undirected networks, relevance is restricted
to those in Pa(X)⊆ Ad j(X). Hence, at each t, G t may be intended as an acyclic directed graph.

G t = (V,Et), represents the pattern of contacts among units of a population. The graph may either be a
given social network, or be randomly generated according to some known contact matrix C. Let V be the set
of (n+ 1) nodes (individuals in the network); as already mentioned, each random variable Xi takes values
in ΩXi = {xi,S,xi,I ,xi,R}, i = 0, . . . ,n. State xi, j indicates Xi belongs to compartment j of an SIR structure,
j = S, I,R. Also, each Xi is assigned label ti, initialized as ti =−∞.

In our model, parameters of the model do not vary with time. Yet, if Xi takes value xi,I ∈ΩXi , all incoming
arcs are converted into Cht(Xi)

1 and t j is updated to t. Let d j,t = |Pat(X j)| be the infectious-indegree of node
X j, conditioning involves the subset of adjacent nodes of X j in Pat(X j), and its corresponding state at (t−1),
for any t ≥ 1.
Based on Eq. (1), we derive the individual FOI λ j,t = τd j,t−1, j = 0, . . . ,n, t ≥ 0. At each t, P(X t |X t−1,Pat(X))=
{P(xt |xt−1, pat(X)) : xt ,xt−1 ∈ΩX , pat ∈ΩPat (X)}. The CPT of node X j at t is specified in Table 1, that may
be as well intended as a transition matrix, whose columns sum to one.

In details, the first column of the CPT represents the infection process, i.e. people moving from S to I in an
SIR model. We assume the infectious-indegree of any node X j serves as a proxy of the product cI(t)/N(t)
from Eq. (1). By definition, zero-case (X = xI), i.e. a single infectious individual in a fully susceptible
population, is expected to produce |Ch0(X)| primary infections, at most. We define the basic reproduction
number associated to B = ∪∞

t=0B
t as follows:

RB
0 = min

(
|Ch0(X)|, |Ch0(X)|τγ

−1)≥ 0 . (3)

Let τ = 1, if recovery is fast, i.e. γ is large, RB
0 will likely overestimate the number of secondary cases.

xt−1
j,S ;Pat(X j) xt−1

j,I ;Pat(X j) xt−1
j,R ;Pat(X j)

xt
j,S; t j e−λ j,t 0 0

xt
j,I ; t j 1− e−λ j,t e−γ(t−t j+ε) 0

xt
j,R; t j 0 1− e−γ(t−t j+ε) 1

Tabella 1 CPT of node X j , at time t in an SIR-Bayesian network. ε ≥ 0, in our application (see Fig. 2) we set ε = 1.

3 Results and Discussion

As a toy example, we applied our proposal to a population of (n+ 1) = 20 individuals, whose pattern of
contacts is depicted in Fig. 2(top-panel). The propagation schema was produced over M = 1000 simulations
of the model with τ = 0.45 and γ = 0.60. At each m, introduction of a randomly selected infectious zero-

1 Arcs only are converted into outgoing edges: if Xi has already incoming edges, those are unchanged.
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cases produced on average 3.56 secondary cases.2 We compared our results with the corresponding SIR
model; epidemic curves (and empirical quantile values of uncertainty) are depicted in Fig. 2(top-panel).

Let us state some general remarks. As a first, we stress recovery of some node Xi, at t ≥ 1, acts as a
blocking mechanism, flooring P(xt

j,I |X t−1,Pat(X j) = {Xi}, t j = ∞) to zero.3 Detection of paths originating
from the zero-case, say X0, that are likely to be blocked by recovery of a single node (or few of them) allows
prior identification of critical subjects. Those subjects may be targeted by prevention strategies, tackling
a minimal subset approach. Graphical tools may be used to detect blocked from active paths [7] for the
propagation of a disease, such as the Bayes Ball algorithm [8].

In this direction, we argue a general evaluation of the topology of the network would critical in this sense.
E.g., for a fixed transmissibility, a sparse graph will be more exposed to the blocking mechanisms mentioned
above, compared to a denser one. Also, identification of cliques, i.e. maximally connected sets of nodes, may
constitute valuable knowledge to policy planning.

As a second remark, repeated sampling allows to evaluate uncertainty in the overall propagation process.
Several sampling procedures were proposed in the literature of DBNs, see, E.g., [6]. A efficient naive ap-
proach would simply take the so-called maximum a posteriori (MAP) configurations from ΩV, at each time
step, to update Et .

Additionally, other than RB
0 , measures on the disease propagation process may be derived from repeated

iterations, as well as analytically. Among others, incidence and sero-prevalence of a disease [1]. Again, MAP
configurations may be considered as average values prior to simulating.

Figura 2 Top-panel: Net-
work generated at random,
with |V| = 20, average
in-degree 10 and d = 19.
Bottom-panel: Epidemic cur-
ves resulting from M = 1000
simulations on the network
above, |V| = 20, τ = 0.45,
γ = 0.60. At every simulation,
a node is selected at random
as zero-case. Epidemic curves
describe the relative size of
compartments S (yellow), I
(green) and R (light blue).
Quantile bands and median
are compared with the curves
resulting from the SIR net-
work, with c = 0.20; dashed
lines orange, dark green and
blue correspond, respectively
to compartments S, I and R.

2 We expected RB
0 ∈ [1.33,10], by Eq. (3).

3 Since d j,t = 0.
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As a further point, a straightforward extension might assume contacts are characterized by different
strengths wi, j ∈ [0,1], such that wi, j → 0 indicates a almost vacuos contacts between nodes Xi and X j, for
any t ≥ 0. Then, a more general definition of infectious-indegree may be introduced:

d j,t = ∑
Xi∈Pat (X j)

wi, jIX t
i =xt

i,I
.

Finally, suppose we are interested in modeling an SIRS model, where recovered individuals move back to
compartment S according to some rate φ ≥ 0, that is after φ−1 units of time in average. It suffices to replace
the third column of Table 1 with

[
e−φ ,0,1− e−φ

]T .

4 Conclusions and Future Work

We proposed an almost-Dynamic Bayesian Network to efficiently deal with uncertainty in the propagation
process of a given infectious disease in an SIR model. Particularly, our proposal models uncertainty in the
propagation process by i) probabilistic modeling of the transitions across compartments (analogously to a
stochastic SIR model), ii) accounting for the dynamic topology of the network (like any individual-based
model). We stress our proposal is aimed to provide an intuition of the methodology: extension to models with
several layers of complexity is straightforward, the increased complexity being restricted to the preliminary
compilation process, i.e. to its parametrization, without affecting the inferential complexity. Future work will
consider applications in this direction.
Future research will also consider a thorough approach to uncertainty, by incorporating uncertainty in the
parameters, E.g. by means of auxiliary root nodes, to further extend stochastic epidemiological modeling
based.
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