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Abstract Vector Autoregressive (VAR) models are widely used to estimate and fore-
cast multivariate time series. However, the large number of parameters of VAR mod-
els can lead to unstable inference and inaccurate forecasts, particularly with many
variables. For this reason, restrictions supported by the data are usually required. We
propose an objective Bayes approach based on graphical VAR models for learning
contemporaneous dependencies as well as dynamic interactions among variables.
We show that, if the covariance matrix at each time is Markov with respect to the
same decomposable graph, then the likelihood of a graphical VAR can be factor-
ized as an ordinary decomposable graphical model. Additionally, using a fractional
Bayes factor approach, we are able to obtain the marginal likelihood in closed form
and perform Bayes graphical model selection with limited computational burden.
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Bayes factor, multivariate time series

1 Introduction

Vectore Autoregressive (VAR) models represent the workhorse models for estimat-
ing and forecasting multiple time series and widely applied in many fields such
as macroeconomics, environmental sciences, neuroscience and genomic.VAR mod-
els are very flexible and allow to account for both contemporaneous dependencies
among variables as well as their evolution over time. However, the large number
of parameters of the VAR model usually leads to unstable inference and inaccurate
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forecasts, particularly when dealing with many variables. This suggests to introduce
parsimonious models.

Several solutions have been proposed in the literature. For instance, the Bayesian
stochastic search variable selection approach, introduced by [9], has been exten-
sively applied to select restrictions in VAR models. As an alternative, graphical
modeling can be employed for the identification of the VAR model [6, 1, 2].

Following the latter track, we propose an objective Bayes approach for learning
contemporaneous dependencies and dynamic interactions among variables under a
graphical VAR model. We argue that, if the covariance matrix at each time is Markov
with respect to the same decomposable graph, then the likelihood of a graphical
VAR can be factorized as an ordinary decomposable graphical model. Additionally,
using a fractional Bayes factor methodology, we are able to obtain the marginal
likelihood in closed form and perform Bayes graphical model selection with limited
computational burden.

2 Vector Autoregressive Model

Let yt be a (q× 1) vector of observations collected at time t, t = 1, . . . ,T . The
reduced form of a stable VAR of order k, VAR(k), is given by

yt =
k

∑
i=1

Biyt−i + ε t , t = 1, . . . ,T, (1)

where Bi are (q× q) matrices of coefficients or lag matrices, determining the dy-
namics of the system and ε t is a (q× 1) dimensional white noise process, that is
ε t |Σ ∼Nq(0,Σ), independently over time. Clearly, the observations depend linearly
on the previous k observation vectors, where k is assumed to be known. Exogenous
variables can be added to the model, leading to straightforward modifications of the
results shown here. For simplicity, the intercept is also omitted in the following.

Let zt =(y′t−1, . . . ,y
′
t−k)

′ denote the (kq×1) vector of lagged observations at time
t and B =

(
B′1, . . . ,B

′
k

)′ be the (kq×q) obtained by matrix stacking the coefficients.
Hence, equation (1) can be written as

yt = B′zt + ε t . (2)

For given initial values Y0 = (y′0,y
′
−1, . . . ,y

′
−k+1)

′, which we assume throughout to
be available, the (conditional) likelihood of VAR(k) in (1) is written in the form

f (y1, . . . ,yT | B,Σ) =
T

∏
t=1

f (yt | zt ,B,Σ) , (3)

where the conditional distribution f (yt | zt ,B,Σ) in (3) is the multivariate normal
distribution yt | zt ,B,Σ ∼Nq (B′zt ,Σ). Let Y = (y1, . . . ,yT )

′ be the (T ×q) matrix
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collecting all observations and Z be the (T × kq) matrix containing all the lagged
variables, i.e., Z = (zt , . . . ,zT )

′. Equation (1) can be rewritten in matrix form as

Y = ZB+E, (4)

where E = (ε1, . . . ,εT )
′ is the (T × q) matrix of errors following a Matrix Normal

distribution with zero mean, row identity matrix IT and column (or cross) covariance
Σ , that is, E | Σ ∼ NT,q(0,IT ,Σ). Therefore, we can write the likelihood of VAR(k)
as

f (Y | B,Σ) = (2π)−
T q
2 |Σ |−

T
2 exp

{
−1

2
tr
[
Σ
−1
((

B− B̂
)′Z′Z(B− B̂

)
+ Ê′Ê

)]}
(5)

where tr(·) is the trace operator, Ê = Y−ZB̂ and B̂ = (Z′Z)−1Z′Y is the OLS
estimator of the coefficient matrix, requiring T ≥ kq. In other words, the likelihood
of the VAR model can be expressed as the likelihood of a multivariate regression
model where the predictors are the lagged variables.

3 Fractional Bayes inference

To complete the Bayesian specification of the VAR(k) model in (1), a prior distribu-
tion for model parameters B and Σ is required. In this work, we employ an objective
approach for model selection based on the Fractional Bayes Factor (FBF), see [11].
The idea of the FBF is to train a noninformative prior using a small fractional power
b of the likelihood function, converting the noninformative prior into a proper prior
that is then used to compute the marginal likelihood using the complementary frac-
tion power 1−b of the likelihood.

Starting with a improper prior pD(B,Σ) ∝ |Σ |−(aD+q+1)/2 and setting b = T0/T ,
we can show that the fractional prior for VAR(k) is the Matrix Normal-Inverse
Wishart MN I W (B,C,ν ,R), where B = B̂, C = T/T0 (Z′Z)−1, ν = aD−kq+T0
and R = T0/T Ê′Ê. Hence, the fractional prior density is given by

pF(B,Σ)=K (C,R,ν) |Σ |−
(

aD+T0+q+1
2

)
exp
{
− T0

2T
tr
[
Σ
−1
((

B− B̂
)′ (Z′Z)(B− B̂

)
+ Ê′Ê

)]}
,

(6)
where

K (C,R,ν) = (2π)−kq2/2 |C|−q/2 |R/2|ν/2
Γq (ν/2)−1 (7)

is the normalizing constant with Γq (ν/2) the q-dimensional gamma function eval-
uated at ν/2. Prior (6) is proper under two conditions: i) aD +T0− kq+ 1 > q so
that ν > q−1; ii) T − kq > q−1 so that Ê′Ê is (almost surely) positive define. The
first condition becomes T0 > q+ kq− 1 if aD = 0, or T0 > kq if aD = q− 1, i.e., a
larger T0 is needed in the case aD = 0. Since b has to be minimal, [5] recommend to
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set aD = q−1 and T0 = kq+1 such that ν = q. The second condition simplifies to
T > q+ kq−1 that looks realistic when dealing with long time series.

Combining prior (6) with likelihood (5) we obtain a posterior distribution that is a
Matrix Normal-Inverse Wishart with updated parameters, i.e., MN I W (B,C,ν ,R),
where B = B̂, C = (Z′Z)−1, ν = aD− kq+T and R = Ê′Ê.

Because of conjugacy, the fractional marginal likelihood of VAR(k) is available
in closed form and can be obtained, up to a multiplicative factor, as the ratio of the
prior and posterior normalizing constants, leading to

mF(Y) = π
− (T−T0)q

2

(
T0

T

) (aD+T0)q
2 ∣∣Ê′Ê∣∣− T−T0

2 Γq ((aD− kq+T )/2)
Γq ((aD− kq+T0)/2)

. (8)

Let YJ be the T ×|J| submatrix which contains selected columns of data matrix Y
belonging to a subset J of cardinality |J| of the full set of q variables. Using the result
presented in [5], we can obtain the fractional marginal likelihood mF(YJ) based on
the submatrix YJ by making the following substitutions in (8):

q→ |J|, aD→ aD−|J|, Ê→ ÊJ = YJ−ZB̂J , (9)

where J denotes the complementary set of J and B̂J is the kq× |J| submatrix of
B̂ whose column contain the OLS estimates of the regression coefficients for the
selected responses. To ensure positive definiteness of Ê′JÊJ , the condition |J|< T −
kq+1 must be satisfied, when setting aD = q−1 and T0 = kq+1.

4 Graphical VAR

[7] introduced the class of time series chain graphs (TSCG). More specifically, let
Y = {Yt(a), t ∈ Z,a = 1, . . . ,q} be a q-variate stationary stochastic process and V =
{1,2, . . . ,q} be the set of indexes. Let G=(VT S,E), be a graph with VT S =V×Z and
edge set E, whose edges have at most lag k and which is invariant under translation.
If Bi(b,a) is the (b,a)-element of matrix Bi in (1) and Ω(a,b) is the (a,b)-entry of
precision matrix Ω = Σ

−1, then the VAR model with the following constraints on
the parameters

(a, t− i) → (b, t) ∈ E ⇔ Bi(b,a) 6= 0 i = 1, . . . ,k
(a, t) — (b, t) ∈ E ⇔ Ω(a,b) 6= 0 t = 1, . . . ,T

represents a VAR(k,G) model. Thus, a nonzero element in B corresponds to a di-
rected edge in the graph reflecting the recursive structure of the time series while
undirected edges specify contemporaneous interactions among variables, that is a
covariance selection model. Hence, our goal is making inference on graph G.
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4.1 Covariance selection model

Let Gu = (V,Eu) be the undirected graph representing the contemporaneous depen-
dencies at any time t, and assume that Σ is Markov with respect to Gu. For the
graph-theory terminology in this section we refer the reader to [10]. Also, we con-
fine our analysis to the class of decomposable graphs for all time points. Recall that
Gu is decomposable when all cycles in Gu admit a chord, that is an edge joining two
non-consecutive vertices of the cycle. Let C and S denote the set of cliques and
separators of the graph Gu, respectively. Then, we can show that the likelihood of a
graphical VAR(k,G) factorizes as following:

f (Y | B,Σ ,Gu) =
∏C∈C f (YC | BC,ΣCC)

∏s∈S f (YS | BS,Σ SS)
, (10)

where BC and BS are the kq×|C| and kq×|S| matrices whose columns contain the
coefficients of the selected responses YC and YS, respectively.

If B is unconstrained and Σ is in M+(Gu), the set of all symmetric positive-
definite matrices having elements in Σ

−1 set to zero for all (a,b) /∈Eu, then a natural
noninformative prior on (B,Σ | Gu) is

pD(B,Σ | Gu) ∝
∏c∈C |Σ |−|C|

∏s∈S |Σ |−|S|
, (11)

which is a limiting form of an Hyper-Inverse Wishart distribution [8]. Training
prior (11) with a fraction b = T0/T of the likelihood, the fractional prior for
a VAR(k,G) becomes a Matrix Normal Hyper-inverse Wishart distribution [3],
MN H I W (B,C,δ ,R), where B,C, R are defined as above and δ = T0 − kq.
Therefore, the prior density is

pF(B,Σ | Gu) = H(C,R,δ )

×
∏c∈C |ΣCC|−(|C|+T0/2) exp

{
− T0

2T tr
[
ΣCC

((
BC− B̂C

)′Z′Z(BC− B̂C
)
+ Ê′CÊC

)]}
∏s∈S |Σ SS|−(|S|+T0/2) exp

{
− T0

2T tr
[
Σ SS

((
BS− B̂S

)′Z′Z(BS− B̂S
)
+ Ê′SÊS

)]} ,

(12)

where the normalizing constant is

H(C,R,δ )=
∏c∈C (2π)−|C|kq/2 |C|−|C|/2 |RCC/2|(δ+|C|−1)/2

Γ|C| ((δ + |C|−1)/2)−1

∏s∈S (2π)−|S|kq/2 |C|−|S|/2 |RSS/2|(δ+|S|−1)/2
Γ|S| ((δ + |S|−1)/2)−1 .

In other words, a Markovian structure is assumed a priori for the lag coefficients
that follows the structure of the likelihood. Thus, using prior (12), the fractional
marginal likelihood has a closed form obtained, again, as the ratio of the prior and
posterior normalizing constants. Equivalently, we can write
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mF(Y | Gu) =
∏c∈C mF(YC)

∏s∈S mF(YS)
, (13)

where, following [4], mF(YC) and mF(YS) are computed by means of (9) with J = c
and J = s, respectively, when setting aD = q−1. Again, formula (9) provides a valid
marginal likelihood if T > |C|+ kq−1 , for each c ∈ C .

As a final remark here, we stress that the joint likelihood of a graphical VAR(k,G)
factorizes as an ordinary decomposable graph model, even though the decomposable
structure is assumed conditionally at each time step. As a result, the closed form
of the marginal likelihood allows to perform Bayes graphical model selection of
VAR(k,G) models with easy computation.

A simulation study (not presented here for brevity) shows the capability of the
approach to recover the underlying graph according to different scenarios (sample
size, number of variables, number of lags, lag matrix). Future work will explore the
possibility to build a joint prior model that simultaneously accounts for restrictions
both on lag coefficients and covariance matrix.
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