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Abstract A new methodology for robust clustering without specifying in advance
the underlying number of Gaussian clusters is proposed. The procedure is based on
iteratively trimming, assessing the goodness of fit, and reweighting. The forward
version of our procedure is initialized with a high trimming level and K = 1 pop-
ulations. The procedure is then iterated throughout a fixed sequence of decreasing
trimming levels. New observations are added at each step and, whenever a goodness
of fit rule is not satisfied, the number of components K is increased. A stopping
rule prevents our procedure from using outlying observations. Additional use of a
backward criterion is discussed.
Abstract In questo lavoro viene introdotta una metodologia per la cluster analysis
robusta che non richiede la specificazione a priori del numero di cluster gaussiani.
La procedura si basa, iterativamente, sul trimming, la valutazione della bontà di
adattamento ed il reweighting. La sua versione forward viene inizializzata fissando
un livello di trimming alto e K = 1 popolazioni sottostanti. In seguito la proce-
dura viene iterata all’interno di una griglia fissata di livelli trimming decrescenti.
Ad ogni passo vengono reinserite osservazioni e, laddove l’adattamento peggiori
sostanzialmente, il numero di componenti K viene aumentato. Una regola di arresto
garantisce che valori anomali non vengano usati per stimare i parametri. Si discute
infine un criterio aggiuntivo di tipo backward.
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1 Introduction

Model based clustering procedures for multivariate data can be inconsistent in pres-
ence of contamination. A trimming step is often used to guarantee robustness. Im-
partial trimming is based on discarding a fixed proportion α of observations lying
far from their closest centroid. A detailed review of robust clustering may be found
in part II of [7]. The procedure of [10] is based on pre-specifying α and the number
of clusters K. Simultaneously fixing the tuning parameters is still an open problem.
First, it shall be noticed that the two parameters are clearly intertwined. Indeed the
optimal α depends on the chosen K and also the vice versa holds. We propose here
to use iterative reweighting to obtain robust cluster analysis without having to spec-
ify in advance these two tuning parameters. Our approach is related to the forward
search philosophy (e.g., [1]), but with substantial differences. The rest of the paper
is as follows. In Section 2.1 we briefly review the tclust methodology and its
reweighted version. Our new proposal for robust clustering is presented in Section
3 while its application to real data example is provided in Subsection 3.2. Finally
Section 4 contains the concluding remarks and the further directions of research.

2 Trimming approach to cluster analysis and its reweighted
version

2.1 The tclust methodology

Within this subsection we briefly present the tclust methodology, [10], whose R
implementation is presented in [9] and its reweighted version introduced in [4]. Let
xi ∈Rp be a sample point, f (·) the multivariate normal density, µ j and Σ j be location
and scatter parameters, respectively, of the j-th group. Additionally let gψi(·) be the
contaminating density and K the number of groups. Then the likelihood function
associated to the spurious outliers model is given by:[

K

∏
j=1

∏
i∈R j

f (xi; µ j;Σ j)

][
∏
i/∈R j

gψi(xi)

]
(1)

Additionally it must be pointed out that, in equation (1), R =
⋃K

j=1 R j represents the
set of the clean observations and is such that #R = dn(1−α)e and only the clean
data give a contribution to the likelihood function, while, noise component, whose
likelihood is given by the right hand side of equation (1) give no contribution to the
likelihood function. The maximum likelihood estimator of (1) exists if and only if
the following condition on the contaminating density holds:
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argmax
R

max
µ j ,Σ j

k

∏
j=1

∏
i∈R j

f (xi; µ j,Σ j)⊆ argmax
R

∏
i/∈∪k

j=1R j

gψ(xi) (2)

As pointed out in [5], condition (2) states that identification of clean observations
by maximization of the right hand term of (2) identifies the same observations as
would identification of contaminated observations by maximizing the part of the
likelihood corresponding to the noise. Thus, once clean observations are identified
by maximizing the right hand term of (2), then the contaminated entries are opti-
mally identified.
Additionally, if the condition (2) holds, the MLE of the likelihood function (1) has
a simple representation and its maximization reduces to the maximization of:

K

∑
j=1

∑
i∈R j

log f (xi; µ j,Σ j) (3)

2.2 The tclust without specifying α in advance

We now focus our attention to two tuning parameters, that are required to be fixed
by the user in order to appy the tclust methodology: the trimming level α and
the number of clusters K. In [4] is introduced a contribution, known as reweighted
tclust or rtclust for the sake of brevity, designed to avoid the specification
of the trimming level α . The idea behind such contribution is starting with a high
trimming level α0 the tclust, for which efficient computing is possible ([9]).
Once the procedure is initialized, L decreasing trimming levels α1 > α2 > .. . > αL
are fixed; then the rtclust algorithm proceeds, for each l = 1,2 . . . ,L, as follows:

1. Initialization: Set the initial parameters’ set π0
1 , ...,π

0
k ,π

0
k+1, µ0

1 , ...,µ
0
k and Σ 0

1 , ...,Σ
0
k

obtained by applying the tclust with a high trimming level α0.
2. Reweighting process: Consider αl = α0 − l · ε with ε = (αL − α0)/L for l =

1, ...,L

2.1 Fill the clusters: Given π
l−1
1 , ...,π l−1

k ,π l−1
k+1, µ

l−1
1 , ...,µ l−1

k
and Σ

l−1
1 , ...,Σ l−1

k from the previous step, let us consider

Di = min
1≤ j≤k

d2
Σ

l−1
j

(xi,µ
l−1
j ) (4)

and sort these values as D(1) ≤ ...≤ D(n). Take the sets

A = {xi : Di ≤ D([n(1−αl)])} and B = {xi : Di ≤ χ
2
p,αL
}

Now, use the distances in (4) to obtain a partition A∩B = {H1, ...,Hk} with
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H j =

{
xi ∈ A∩B : d

Σ
l−1
j

(xi,µ
l−1
j ) = min

q=1,...,k
d

Σ
l−1
q

(xi,µ
l−1
q )

}
.

2.2 Update cluster weights The proportion of contamination is estimated by com-
puting

π
l
k+1 = 1− #B

n
.

Given n j = #H j and n0 = n1 + ...+ nk the cluster weights are estimated by
computing:

π
l
j =

n j

n0

(
1−π

l
k+1
)
. (5)

2.3 Update locations and scatters: Update the cluster centers by taking µ l
j equal

the sample mean of the observations in H j and the scatter by computing the
sample covariance matrix of the observations in H j multiplied by its consis-
tency factor.

3. Output of the algorithm: µL
1 , ...,µ

L
k and Σ L

1 , ...,Σ
L
k are the final parameters es-

timates for the normal components. From them, final assignments are done by
computing

Di = min
1≤ j≤k

d2
ΣL

j
(xi,µ

L
j ),

for i = 1, ...,n. Observations assigned to cluster j are those in H j with

H j =

{
xi : d

ΣL
j
(xi,µ

L
j ) = min

q=1,...,k
dΣL

q
(xi,µ

L
q ) and Di ≤ χ

2
p,αL

}
and the trimmed observations are observations not assigned to any of these H j
sets (i.e., those observations with Di > χ2

p,αL
).

There are, in our opinion, two great advantages in using rtclust. First, as shown
in th simulation study and the theoretical properties reported in [4], high robustness
with high efficiency can be reached at the same time. Secondly no much tuning is
required. Indeed the final estimated contamination level is independent to the initial
trimming α0 and the assumptions on constraint on the eigenvalues can be relaxed
after the initialization. It shall be noticed that, besides the required number of groups
K - to which are dedicated the further sections of the paper - the parameter αL my
need tuning too. Such parameter establishes how far the outliers are supposed to
be placed with respect to the bulk of the data. Such choice is pretty subjective and
strongly depends on the context of application only heuristics. We only recall the
guidelines provided in [2] for generally tuning in robust statistics and the contribu-
tion provided in [6] where an example of the tuning of the parameter αL is provided.
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3 The tclust without specifying α and K in advance

3.1 Introduction

We now outline an automatic methodology based on reweighting that does not need
the imposition of the desired number of groups by the user. We do so by applying the
reweighting logic to both reinsert the wrongly discarded observations and increase
the number of groups, if required. To do so, we resort the forward search philosophy
outlined in [1]. In practice, we start by applying the tclust method with K = 1
and α = .9 imposed. Then, we apply the reweighting approach outlined in [4] to
estimate the true contamination level ε̂ given K = 1 population. Once we can rely
on a “precise” estimate of the contamination level we try to increase number of
groups imposing Ktry =K+1 and a trimming level equal to ε̂ . The goodness of fit of
this new proposed model is evaluated by computing the proportion of observations
that are flagged as outlying in the new proposed model that were not flagged as
outlying at the previous step. The underlying idea is the following. If a considerably
high proportion of observations initially considered clean at the previous step, are
recognized as outlying in the current step as a higher number of underlying groups
is imposed, the this means that a high dense region of points (a potential cluster)
has been trimmed off in the previous step. Algorithmically speaking we alternate
the tclust and the rtclust up to convergence within the steps described in
Algorithm 1. A graphical counterpart is provided in Figure 1.

Algorithm 1

Initialization:

1. Fix: K0 = 1,α0 = .9 and ρ ∈ [0.01,0.05]
2. Let modrew be the output of rtclust with K0 and α0 imposed

Update:

3. Take ε̂ estimated by the model modrew and set Ktry = K +1.
4. Launch the tclust with α = ε̂ and K = Ktry imposed.
5. Take πnew: the proportion of observations flagged as outlying by modtry.

Stopping rule:
6. If πnew ≤ ρ then stop. Else, if πnew > ρ:
• K = K +1
• Calculate modrew by launching rtclust with K imposed.
• Repeat steps 3-6.
Final output:

7. Return the output of modrew as the final output of the algorithm.
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Fig. 1 The application of Algorithm 1 to a 2- dimensional simulated composed by K = 2 clusters
and a proportion of contaminating points equal to 0.10.
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3.2 A real data application

In this Section we apply the proposed iterative reweighting approach to the 6-
dimensional “Swiss Bank Notes” data set presented in [8] which describes certain
features of 200 Swiss 1000-franc bank notes divided in two groups: 100 genuine and
100 counterfeit notes. This is a well known benchmark data set. In [8], it is pointed
out that the group of forged bills is not homogeneous since 15 observations arise
from a different pattern and are, for that reason, outliers. As stated in Algorithm 1
we start by imposing a trimming level α0 = .9 and K = 1 clusters. The obtained
results, that are briefly summarized in Figure 2, are in substantial agreement with
characteristics described in [8]. Indeed K = 2 are automatically estimated by the
algorithm while the estimated proportion of outliers is slightly overestimated: 10%
of outliers are recognized by the algorithm while in [8] the declared percentage of
outliers is equal to 7.5%.
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Fig. 2 Fourth against the sixth variable of the Swiss Bank Notes data set. (a) The original classifi-
cation. (b) The initial classification obtained by imposing K = 1 and α0 = .9. (c) The final output
of Algorithm 1
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4 Concluding Remarks

We outlined a robust procedure for clustering data that does not need the specifica-
tion in advance of the required number of groups and of the proportion of outlying
observations. We are aware of the fact that, as pointed out in [11], There are no
unique objective “true” or “best” clusters in a dataset. Clustering requires that
the researchers define what kind of clusters they are looking for. In conclusion, as
pointed out in [3], we do not think that a fully automatized way to fix simultane-
ously all the parameters is to be expected. Indeed, the outlined methodology can be
viewed as an additional tool to be combined with researchers’ specification and a
priori informations to provide a better understanding of the phenomenon of interest.
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