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Abstract Earthquake scientists continue to improve models of the spatio–temporal
evolution of seismicity, including complex aftershock sequences. The Collaboratory
for the Study of Earthquake Predictability (CSEP) prospectively evaluates the pre-
dictive skill of probabilistic forecasts by such models. Here, we assess the robustness
of one popular skill score, the information gain per earthquake, with respect to tem-
poral fluctuations of the seismicity rate. We conduct a numerical experiment with
a widely-used temporal stochastic seismicity model, a special case of Hawkes pro-
cess. Our simulations reveal that the information gain fluctuates substantially with
time, because a central limit theorem does not hold in a realistic parameter regime.
Our results may eventually contribute to more robust inferences.
Abstract Gli scienziati della terra propongono modelli probabilistici sempre più
sofisticati per descrivere l’evoluzione spazio–tempo dei terremoti. Il CSEP (Collab-
oratory for the Study of Earthquake Predictability) stima prospettivamente le per-
formance predittive di tali modelli. Qui, viene valutata l’incertezza relativa a uno
stimatore utilizzato da CSEP, l’information gain per earthquake. Viene condotto un
esperimento numerico con un noto modello temporale di sismicità, caso particolare
di processo di Hawkes. Le simulazioni effettuate rivelano che, per valori realis-
tici dei parametri, l’information gain mantiene una variabilità elevata nel tempo. I
risultati possono contribuire a rendere le conclusioni inferenziali più robuste.
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1 Introduction

Over the last decade, stochastic and physics-based models of seismicity have ma-
tured to sophisticated system-specific forecast models that can reliably forecast the
evolution of seismicity, including complex aftershock sequences. The international
Collaboratory for the Study of Earthquake Predictability (CSEP) provides indepen-
dent and prospective evaluations of model forecasts, and thereby aims to support
robust inferences about the performances of models and guide model development
[8]. One challenge is the lack of data: large earthquakes are rare, especially at the
regional scales. In addition, seismicity fluctuates over orders of magnitude because
earthquakes cluster in space on faults and in time during aftershock sequences.

Because short-term earthquake forecasts are now starting to inform decision-
making of societal relevance, there is an urgent need to understand quantitatively
the robustness of performance metrics. Here, we focus on a popular measure of the
relative predictive skill of two models: the information gain per earthquake.

Despite the information gain’s growing importance, its robustness has not been
studied in detail. Using simulations from a popular model of clustered seismicity,
we show that the information gain suffers from substantial fluctuations, because a
central limit theorem does not hold under realistic parameters. Our ultimate goal
is to make CSEP model inferences more robust by providing guidelines for the
uncertainty in the information gain.

2 The Information Gain per Earthquake

The information gain per earthquake is defined as the log likelihood ratio between
two models, say A and B, divided by the total number of earthquakes N, observed in
a given time window, i.e.

IN(A,B) =
logLA/LB

N
=

logLA− logLB

N
. (1)

Popular statistical models for earthquake occurrences are based on marked point
processes [1, Chap. 6], with magnitudes and locations as marks. We will refer here
only to the time–magnitude analysis, discarding the spatial component.

Consider a marked point process on R+×R+, adapted to the filtration {Ft}t≥0,
with conditional intensity function λ (t,m|Ft−), given the history up to but not in-
cluding time t. Suppose, in addition, that the process is such that the likelihood,
given a realization {(ti,mi)}n

i=1 over the interval [0,T ], for some positive finite T , is
well defined (for further details, see [1, Chap. 7]). Then, the likelihood L of such a
realization is expressible in the form

L =

[
n

∏
i=1

λ (ti,mi|Fti−)

]
exp
(
−
∫ T

0

∫
R+

λ (t,m|Ft−)dmdt
)
. (2)
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Its log likelihood ratio on [0,T ] relative to a compound Poisson process [1, Chap. 6]
with constant intensity ν and mark distribution π(m), that is independent of time t,
is given by

log
L
L0

=
n

∑
i=1

log
λ (ti,mi|Fti−)

νπ(mi)
−
∫ T

0

∫
R+

λ (t,m|Ft−)dmdt +νT. (3)

The basic idea behind the information gain is that a forecast with a higher
joint log likelihood is “better”. However, before observing an earthquake sequence,
IN(A,B) is a random variable and has its own uncertainty. Additionally, it depends
on the duration of the time interval in which we observe the events. We use simula-
tions from a popular model of seismicity to estimate the uncertainty of this statistic
and to explore its robustness to the addition of new sequences.

3 The Epidemic Type Aftershock Sequence (ETAS) Model

The Epidemic Type Aftershok Sequence (ETAS) model was introduced by Ogata
[6]. Belonging to the class of marked Hawkes processes [4, 1], the model approxi-
mates seismicity by an epidemic process: any earthquake increases the rate of future
events for some period of time (Hawkes’ self-exciting property), and large quakes
induce more aftershocks (higher infection rate).

Formally, the ETAS model corresponds to a marked point process [1, Chap. 6]
on R+×R+, adapted to the filtration {Ft}t≥0, with conditional intensity function

λ (t,m|Ft−) =

[
µ + ∑

i:ti<t
k(mi)g(t− ti)

]
p(m), (4)

where µ > 0 represents the background seismicity rate; the term k(mi)g(t− ti) is the
contribution to seismicity rate by the i-th event (ti,mi), specifically

k(m) = Aeα(m−m0), m≥ m0, (5)

is the mean number of direct offspring from an event sized m, m0 being the magni-
tude threshold, and

g(t) =
cp−1(p−1)
(t + c)p , t ≥ 0, (6)

is the modified Omori law [7] for the occurrence times of direct offspring. Magni-
tudes are distributed independently according to the Gutenberg–Richter law [3]

p(m) = β e−β (m−m0), m≥ m0, (7)

which is the probability density function of a translated exponential distribution with
rate parameter β = b log10, b > 0. Magnitudes are independent of past seismicity.
A, α, c, p are constant positive parameters. For the sake of simplicity, we fix m0 = 0.
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The evolution of the information gain is tied to the evolution of the underlying
process, as we will show in Section 4 (see also [1, 2]). Thus, we are interested in
studying the behaviour of the process itself over time.

Stability properties of the ETAS model are simpler to derive in its branching pro-
cess representation; we can interpret the mark mi as the “type” of an individual in a
multi-type Galton–Watson process with a modified time dimension. In this context,
stability is closely related to the concepts of criticality and a branching ratio. The
branching ratio is defined as the number of descendants for one immigrant over the
size of their entire family (all descendants plus the original immigrant); that is

ρ =
Aβ

β −α
. (8)

Sufficient conditions for the existence of a stationary version [1, 2] are

p > 1, β > α, ρ < 1, (9)

which implies a subcritical process. When ρ > 1, the process is supercritical: there
is a finite probability of an infinite number of events in a unit time interval.

Now, let N(T ) denote the number of events in the interval (0,T ]1. If in addition
β > 2α , it can be shown that, for every sequence {Tn}n∈N such that Tn → ∞, a
central limit theorem holds [5], namely

√
Tn

(
N(Tn)

Tn
− µ

1−ρ

)
d→ N

(
0,

µ(1+σ2)

(1−ρ)3

)
, Tn→ ∞, (10)

where

σ
2 =

A2β

β −2α
−ρ

2.

The previous condition β > 2α is necessary and sufficient for the existence of σ2,
and hence the asymptotic variance in (10). These results suggest that

E
[

N(T )
T

]
≈ µ

1−ρ
, V

[
N(T )

T

]
≈ 1

T
× const (11)

for sufficiently large T . However, the condition β > 2α does not hold for quakes.

4 Simulation Study

For each model in Table 1, we simulate ten thousand catalogs within the time win-
dow [0,Tmax], with Tmax = 10 000 days, and compute the information gain per earth-
quake over a finite grid of time T1 < T2 < · · ·< Tk = Tmax, based on the log likelihood

1 N(0) = 0 almost surely.
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ratio in (3). The compound Poisson process used in (3) provides a benchmark. We
set ν = 5 and π(·) = p(·) as the mark distribution.

Experiment µ β α n p c
1 no clustering 1 2.3 0 0 – –
2 short memory cl. 1 2.3 0 .5 5 .1
3 long memory cl. 1 2.3 β /3 .5 1.2 .1
4 no CLT 1 2.3 2.2 .5 1.2 .1

Table 1 Simulation scheme.

Remarkable results are displayed in Fig. 4. Experiment 3 shows well behaved
trajectories of the number of events per unit time N(T )/T . The sample variance is
bounded from above by 1/T times the asymptotic variance µ(1+σ2)/(1−ρ)3 from
(10). As a result, the information gain stabilizes around a single value. On the other
hand, in experiment 4, for which the central limit theorem does not hold, trajectories
and sample variance have a completely different behaviour. The information gain
that does not converge to a stable value but continues to fluctuate. This is a result of
large seismicity variations caused by the high aftershock rates of great earthquakes.

5 Discussion and Conclusions

The lack of an obvious convergence of the information gain per earthquake to a
stable value is a warning flag: a gain measured at a moment in time, even if sup-
ported by a large data set, may change substantially in the future. The fluctuations
result from the empirically-supported near-equality between the Gutenberg–Richter
exponent β and the productivity exponent α . Under these conditions, a central limit
theorem, which otherwise ensures convergence, does not hold.

A next step is to investigate the importance of a physically required maximum
magnitude that truncates the Gutenberg–Richter law. This will theoretically restore
the central limit theorem. However, observed magnitudes near the upper limit are
extremely rare, and therefore the finite variance may not reign in the fluctuations for
decades. Our ultimate goal is to provide CSEP with guidelines for inferring relative
model performance on the basis of the information gain.
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Fig. 1 From top to bottom: ETAS trajectories (number of events per unit time); sample variance
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(
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)
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information gain per earthquake. Note the different y-axis scales between the left and right panels.

4. Hawkes, A.G., Oakes, D.: A cluster process representation of a self-exciting process. Journal
of Applied Probability 11(3), 493–503 (1974)

5. Karabash, D., Zhu, L.: Limit theorems for marked hawkes processes with application to a risk
model. Stochastic Models 31(3), 433–451 (2015)

6. Ogata, Y.: Statistical models for earthquake occurrences and residual analysis for point pro-
cesses. Journal of the American Statistical association 83(401), 9–27 (1988)

7. Utsu, T.: A statistical study on the occurrence of aftershocks. Geophysical Magazine 30(4)
(1961)

8. Zechar, J.D., Schorlemmer, D., Liukis, M., Yu, J., Euchner, F., Maechling, P.J., Jordan, T.H.:
The Collaboratory for the Study of Earthquake Predictability perspective on computational
earthquake science. Concurrency and Computation: Practice and Experience 22(12), 1836–
1847 (2010)


