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Abstract K-means algorithm is one of the most popular procedures in data cluster-
ing. Despite its large use, one major criticism is the impact of the initial seeding on
the final solution. We propose a modification of the K-means algorithm, based on
a suitable choice of the initial centers. Similarly to clustering ensemble methods,
our approach takes advantage of the information contained in a co-association ma-
trix. Such matrix is given as input for the MUS algorithm that allows to define a
pivot-based initialization step. Preliminary results concerning the comparison with
the classical approach are discussed.
Abstract L’algoritmo K-medie è una delle procedure di raggruppamento più uti-
lizzate. Tuttavia, una delle maggiori criticità di tale metodo riguarda l’impatto
della scelta dei semi iniziali sulla configurazione finale. In questo lavoro viene
proposta una variante del K-medie basata su una scelta opportuna dei semi in-
iziali. In linea con i cosiddetti ‘metodi di insieme’, l’approccio considerato sfrutta
l’informazione contenuta in una matrice di co-associazione. Tale matrice viene uti-
lizzata dall’algoritmo MUS per definire i semi iniziali dei gruppi sulla base di unità
pivotali. Vengono discussi alcuni risultati preliminari riguardanti il confronto con
l’approccio classico.
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1 Introduction

The goal of cluster analysis is to group a given collection of objects in such a way
that instances in the same cluster are as similar as possible, according to a suitable
“similarity” criterion (see, e.g., [5]). One of the most popular and widely used clus-
tering techniques is K-means algorithm (see [7] and the references therein). For a
given dataset of n observations Y = (y1, . . . ,yn), with yi ∈ Y ⊂ Rd , i = 1, . . . ,n,
K-means seeks to find a partition of the data into K clusters S = {S1, . . . ,SK} so as
to minimize

φ(S ) =
K

∑
k=1

∑
yi∈Sk

||yi−µk||2,

where µk is the k-th cluster center. The algorithm begins with K randomly initial-
ized centers, and assigns each point to the nearest center; then, the clusters’ centers
are recomputed and the partition updated; such process is iterated until a stable
configuration is reached. In many instances, the number of clusters K is specified
in advance, and the optimal solution is sought conditional on such value. Also the
distance adopted is set in advance, depending on the nature of the data and user sub-
jective preferences. Initial seeding is a more technical issue, usually less discussed,
whose impact on the final result is often neglected. Nonetheless, the choice of the
initial group centers may strongly affect the clustering solution. As already men-
tioned, the classical approach in K-means clustering uses a random seeding in the
first step of the procedure. In practice, multiple random seeds are considered, and the
final K-means solution is chosen as the one that minimizes the objective function.
An alternative seeding technique is proposed by [1], among others. Many exten-
sions of the classical approach have been explored in the literature (for a complete
review see [7]). As it is discussed in [7], classical approaches have been challenged
by using ensembles methods.

Clustering ensembles methods ([9, 10]) explore the idea of the so-called evi-
dence accumulation in order to summarize the information coming from multiple
clusterings into a pairwise co-association matrix, regarded to as a similarity matrix
([8, 6]). Such matrix is constructed by taking the co-occurrences of pairs of units in
the same cluster among the total number of partitions, and then used to deliver the
final consensus clustering. This kind of matrix has been estimated in [4] and used in
the context of the label switching problem in Bayesian estimation of finite mixture
models. In particular, the algorithm of Maxima Units Search (MUS), introduced in
[4] and further developed in [3], has proved to be useful in extracting some specific
units–one for each mixture component–called pivots, from a large and sparse simi-
larity matrix representing an estimate of the probability that pairs of units belong to
the same group.

Here the main idea is to exploit the use of the pivots detected by the MUS al-
gorithm, which are determined as the observations that are “as far away from each
other as possible” according to the co-association matrix, as group centers in the
initialization step of K-means procedure, where such units.
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Section 2 briefly reviews the MUS procedure for the identification of pivotal
units from a given set of data, and outlines the proposed approach. In Section 3 the
performance of the presented algorithm is preliminarily investigated by means of a
small simulation study. Section 4 presents some final remarks.

2 Seeding via MUS algorithm

Consider H distinct partitions of a set of n d-dimensional statistical units into K
groups determined by some clustering technique. It is possible to map them into a
n× n co-association matrix C with generic element ci, j = ni, j/H, where ni, j is the
number of times the pair (yi,y j) is assigned to the same cluster with respect to the
clustering ensemble. Units which are very distant from each other are likely to have
zero co-occurrences; as a consequence, C is a square symmetric matrix expected to
contain a non-negligible number of zeros.

The main task of the MUS algorithm is to detect submatrices of small rank from
the co-association matrix and extract those units yi1 , . . . ,yiK such that the K ×K
submatrix of C with only the i1, . . . , iK rows and columns has few, possibly none,
nonzero elements off the diagonal (that is, this submatrix is identical or nearly iden-
tical). Practically, the resulting units—hereafter pivots—have the desirable property
to be representative of the group they belong to. From a computational point of view,
the issue is non-trivial and involves a global search row by row; as n, K and the num-
ber of zeros within C increase, the procedure becomes computationally demanding.
Given that the pivots correspond to well separated units in the data space, they can
represent an alternative approach to the random seeding in K-means setting. A sim-
ilar idea has been discussed in [1], where the initial centers are chosen on the basis
of suitable weights assigned to data points.

Although K-means clustering is one of the most popular algorithms due to its
simplicity and low computational burden, one major criticism is the impact of the
choice of the initial centers on the final solution. However, limited work has been
developed for improving the seeding of the centers. A modified version of K-means
could benefit from a pivot-based initialization step. In particular, the starting point
is performing multiple runs of the classical K-means with K fixed, and build the
co-association matrix of data units. Such matrix is given as input for the MUS pro-
cedure, yielding the pivots regarded to as cluster centers. Intuitively, such approach
represents a careful seeding which may improve the validity of the final configura-
tion. According to the general K-means method, steps 1a—1c of the MUSK-means
algorithm summarized below collapse in a single step, where the initial centers are
chosen uniformly at random from the data space Y . The remaining steps coincide
with those of the classical K-means version.
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MUSK-means:

1a Perform H classical K-means algorithms, and obtain then H distinct data
partitions, with initial centers chosen uniformly at random.

1b Build the co-association matrix C, where ci, j = ni, j/H, with ni, j the num-
ber of times the pair (yi,y j) is assigned to the same cluster among the H
partitions.

1c Apply the MUS algorithm to the matrix C and find the pivots yi1 , . . . ,yiK .
For each group, set the initial center µk = yik .

2 For each k, k = 1, . . . ,K, set the cluster Sk to be the set of points in Y
that are closer to µk than they are to µ j for all j 6= k.

3 For each k, k = 1, . . . ,K, set µk to be the center of mass of all points in
Sk: µk =

1
|Sk
|∑y∈Sk

y, where |Sk| is the cardinality of Sk.

4 Repeat Steps 2 and 3 until S no longer changes.

3 Simulation results

A preliminary simulation study is carried out in order to explore the performance of
the methodology proposed in Sect. 2. One of the drawbacks of K-means is its inef-
ficiency in distinguishing between groups of unbalanced sizes. For this reason, two
different scenarios in which the classical approach may fail to identify the ‘natural’
groups are considered in the following. In particular, the two simulated datasets re-
produce two clusterings in two dimensions, with three and two groups, respectively.
For illustration purposes, the results from a single simulation are shown in Fig. 1.
The left panel (top) displays the first simulated scenario, where the input data con-
sist of three clusters drawn from bivariate Gaussian distributions with 20, 100 and
500 observations, respectively. The partitions obtained from the classical K-means
algorithm using multiple random seeds and from MUSK-means are plotted in the
top central and right panel of Fig. 1, respectively. As can be seen, classical K-means
tends to split the cluster with the highest density in two separate clusters; conversely,
the cluster composition identified by MUSK-means shows a greater agreement with
the true partition, and the final centers are close to the pivotal units used for the
seeding. The second configuration (see the bottom panel of Fig. 1) consists of data
with ‘two-sticks’ shaped groups of 30 and 370 observations, respectively. Classical
K-means fails in recognizing the true pattern, and the final centers both belong to
the largest cluster. Clustering based on our pivotal units seems to correctly identify
the simulated groups, since two well separated pivots are identified and set as initial
group centers.

In order to evaluate and compare the performance of classical K-means and
MUSK-means, a common measure of the similarity between two partitions, namely,
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Fig. 1: From left to right. Input data generated from a mixture of three Gaussian dis-
tributions (620 samples) (top) and ‘stick’ data (400 samples) with two groups (bot-
tom) of unequal sample sizes; clustering solutions obtained via classical K-means
and MUSK-means algorithms. Each cluster identified is shown in a different color,
with final group centers and pivots marked via asterisks and triangles symbols, re-
spectively.

the Adjusted Rand Index (ARI), is computed at each iteration between the resulting
clustering and the true data partition. The number of replications in the simulation
study is set equal to 1000. Fig. 2 shows the comparison in terms of ARI, for the first
scenario considered. As may be noted, MUSK-means gives overall good results; in
fact, it yields higher values for 60% of the replications, whereas the two procedures
yield the same value of the index in 36% of cases. Concerning the second scenario
characterized by ‘two-sticks’ data, the ARI for K-means is always approximately
equal to 0; the same index for MUSK-means is about zero in 43% of cases, while
for the remaining 57% it outperforms classical K-means giving an ARI equal to 1,
denoting a perfect agreement with the true partition.
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Fig. 2: Comparison between the ARI obtained via classical K-means and MUSK-
means algorithms for the input Gaussian data over 1000 replications.

4 Discussion

We propose a modified K-means algorithm which exploits a pivotal-based phase
seeding. Despite the limited study, preliminary results seem to be promising in terms
of clusters’ identification. It is worth noting that the proposed algorithm is in general
computationally more demanding that the standard procedure, and the complexity
grows with the size of the dataset. On the other hand, similarly to clustering en-
semble, our method takes advantage of the construction of a co-association matrix,
whose information has been only partially exploited so far. Further work is needed
to investigate the use of such matrix and the pivotal units for inferring the optimal
number of groups.
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