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Abstract Modeling quantile regression coefficients functions permits describing the
coefficients of a quantile regression model as parametric functions of the order of the
quantile. This approach has numerous advantages over standard quantile regression,
in which different quantiles are estimated one at the time: it facilitates estimation and
inference, improves the interpretation of the results, and is statistically efficient. On
the other hand, it poses new challenges in terms of model selection. We describe a
penalized approach that can be used to identify a parsimonious model that can fit
the data well. We describe the method, and analyze the dataset that motivated the
present paper. The proposed approach is implemented in the qrcmNP package in R.
Abstract I coefficienti di una regressione quantilica sono funzioni iniettive dell’ordine
del quantile. L’approccio standard è quello di stimare i quantili uno alla volta. Un
metodo alternativo è quello di esprimere la forma funzionale dei coefficienti usando
un modello parametrico. Questo approccio ha numerosi vantaggi: semplifica le pro-
cedure di stima e inferenza, migliora l’interpretazione dei risultati, e risulta statis-
ticamente efficiente. Al tempo stesso, pone nuove sfide in termini di selezione del
modello. La nostra proposta è quella di usare un metodo penalizzato che permetta
di identificare un modello parsimonioso che rappresenti correttamente la funzione
quantilica. In questo articolo descriviamo il metodo, e analizziamo il dataset che
ha motivato il lavoro. L’approccio proposto è stato implementato nel pacchetto R
qrcmNP.
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1 Introduction

Quantiles fully describe the conditional distribution of a response variable given
covariates. Quantile regression (QR; [6]) and its generalizations (e.g., [3]) are the
standard tools for quantile modeling. In QR, the conditional quantile function is
usually written as

Q(p | xxx) = xxxT
βββ (p), (1)

where xxx is a q-dimensional vector of covariates, and βββ (p) is a vector of unknown co-
efficients describing the relationship between xxx and the p-th quantile of the response
variable, p∈ (0,1). In standard quantile regression, different quantiles are estimated
one at the time. When a grid of quantiles is computed, e.g., p = 0.01,0.02, . . . ,0.99,
results can only be summarized graphically. The estimated coefficients are generally
non-smooth functions of p and may suffer from high volatility, which can hinder
their interpretability.

Recently, [5] suggested modeling the quantile regression coefficient functions,
βββ (p), by using parametric functions. Model (1) is reformulated as follows:

Q(p | xxx,θθθ) = xxxT
βββ (p | θθθ), (2)

where θθθ is a vector of model parameters. This approach is referred to as quantile
regression coefficients modeling (QRCM) and permits modeling the entire quantile
function, while keeping the quantile regression structure expressed by equation (1).
Consider, for example, describing βββ (p | θθθ) by k-th degree polynomial functions:

β j(p | θθθ) = θ j0 +θ j1 p+ . . .+θ jk pk, j = 1, . . . ,q.

Each covariate has (k+ 1) associated parameters, for a total of q× (k+ 1) model
coefficients. When either q or k are large, estimation may become difficult and the
model may be poorly identified, causing the variability to grow out of control.

Among different approaches discussed in literature, the least absolute shrink-
age and selection operator (LASSO; [9]) is the most used method to perform model
selection. This procedure requires selecting a tuning parameter. In the literature, tra-
ditional criteria include cross-validation (CV), Akaike’s information criterion (AIC),
and Bayesian information criterion (BIC).

Numerous papers (e.g., [1, 10]) have investigated the estimation of penalized
quantile regression models in high-dimensional setting using the L1-norm of the
coefficients, denoted by L1-QR [1, 8]. These approaches, however, focus on model
selection when estimating one quantile at a time. Generally, this is inefficient and
makes it difficult to interpret the results, because some coefficients could be only
significant at some quantiles.

We propose applying the L1-penalty to the integrated loss function described
by [5], which is minimized to estimate the unknown parameter θθθ in model (2).
We refer to this procedure as penalized quantile regression coefficients modeling
(QRCMPEN).
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The paper is structured as follows. We introduce a penalized estimator in Sec-
tion 2, and propose criteria to select the tuning parameter in Section 3. Section 4
concludes the paper with the analysis of the dataset that motivated this research.

2 The estimator

We assume that model (2) holds, and adopt the following parametrization: βββ (p |
θθθ)= θθθbbb(p), where bbb(p)= [b1(p), . . . ,bk(p)]T is a set of k known functions of p, and
θθθ is a q× k matrix with entries θ jh such that β j(p | θθθ) = θ j1b1(p)+ . . .+θ jkbk(p),
j = 1, . . . ,q. The conditional quantile function is then rewritten as Q(p | xxx,θθθ) =
xxxT θθθbbb(p). The choice of the vector bbb(p), is something arbitrary when the model is
not known in advance, indeed, an intuitive approach could be to choose functions
as flexible as possible. Moreover, as discussed by [5], the values of bbb(0) and bbb(1)
should reflect the assumptions about the support of the outcome, and the interpreta-
tion of parameters may be highly dependent on the model specification. Although all
outcomes are bounded in practice, including unbounded functions facilitates mod-
eling the tails of the distribution. As shown by [5], estimation is carried out by
minimizing

L(θθθ) =
∫ 1

0
L(βββ (p | θθθ))dp, (3)

where L(βββ (p)) is the loss function of standard quantile regression given by L =

∑
n
i=1 (p− I(yi ≤ xxxT

i βββ (p)))(yi− xxxT
i βββ (p)). This estimation procedure is referred to as

integrated loss minimization (ILM), and implemented in the qrcm package in R.
This modeling approach is very flexible, and usually provides a good fit of the

data. However, it tends to generate large models, causing overparametrization and
loss of efficiency. To implement an automatic procedure for model selection, we
modify the loss function (3) by introducing a L1-norm penalizing factor:

L(λ )
PEN(θθθ) =

∫ 1

0
L(βββ (p | θθθ))+λ

q

∑
j=1

k

∑
h=1
| θ jh | dp, (4)

where λ ≥ 0. We refer to this estimation approach as penalized integrated loss min-
imization (PILM). To minimize L(λ )

PEN(θθθ) with respect to θθθ , we use a pathwise coor-
dinate descent algorithm [4]. The described PILM estimator is implemented in the
qrcmNP package in R.

3 Tuning parameter selection

With a given set of data, the true model is not known. Having adequate criteria for
model selection is therefore crucial. In penalized regression, the tuning parameter
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λ balances the trade-off between goodness of fit and efficiency. We denote by θ̂θθ :=

θ̂θθ
(λ )

the estimator of θθθ obtained by minimizing (4) at a given value of λ . AIC- and
BIC-type selectors are grid-search criteria that minimize Dev(λ )+ cn · df(λ ), where
Dev(λ ) is the explained deviance of the model (a measure of goodness-of-fit defined
below) corresponding to θ̂θθ , cn is a constant that could depend on the sample size n,
and df(λ ) reflects the number of nonzero elements of θ̂θθ . To improve efficiency and
computation, we propose standardizing both xxx and bbb(p). Following [7], we define
Dev(λ ) = logL(λ )

PEN(θ̂θθ), i.e., the logarithm of the minimized loss function given by
(4). The AIC and BIC criteria are given by

AIC(λ ) = logL(λ )
PEN(θ̂θθ)+n−1df(λ ), (5)

BIC(λ ) = logL(λ )
PEN(θ̂θθ)+(2n)−1 log(n)df(λ )Cn, (6)

where Cn is some positive constant, that diverges to infinity as n increase. The value
Cn = 1 corresponds to the ordinary BIC.

4 Variables selection for inspiratory capacity

We applied the PILM estimator to a subset (n = 2201) of the data analyzed in [2].
The data refer to a study carried out in 1988-1991 in Northern Italy, and included
1063 males and 1138 females. The study aimed to estimate percentiles of inspira-
tory capacity (IC), a measure of lungs function. The following nine predictors were
available: age, height, body mass index (BMI), sex, and indicators for current smok-
ing, occupational exposure, cough, wheezing, and asthma.

We model the intercept using a linear combination of log(p) and log(1− p), that
together define the quantile function of the asymmetric Logistic distribution, a very
flexible model used to describe possibly skewed random variables with heavy tails,
while the coefficients associated with the covariates were described by a shifted
Legendre polynomial up to third degree, inclusive of an intercept. The maximal
model had 3+ 4× 9 = 39 parameters. We used AIC and BIC to assess model fit.
As shown by simulations, AIC criterion tends to select overparametrized models,
while BIC criterion is more parsimonious with a higher ability to discard irrelevant
covariates (xxx) and basis functions (bbb(p)). Results are reported in Table 1.

Table 1 Model selection based on AIC and BIC criteria. We report the number of parameters, the
number of selected covariates, the optimal λ value, the value of the minimized loss function, and
the p-value of a Kolmogorov-Smirnov goodness-of-fit test.

Criterion n. of parameters n. of covariates λ Loss P-value KS

AIC 31/36 7/9 20.79 293.31 .77
BIC 19/36 4/9 60.47 294.01 .53
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We used the model selected by BIC and estimated it again using unpenalized
QRCM. The model is represented graphically in Figure 1. Because we were mostly
interested in the low quantiles of IC, in Table 2 we only report the estimated quantile
regression coefficients, β̂ββ (p) = βββ (p | θ̂θθ), at p = 0.01, p = 0.05, and p = 0.50. Age,
height, BMI and sex were statistically significant. Figure 1 shows the regression co-
efficient functions for all covariates over the interval p ∈ (0,1). Age had a negative
effect at all quantiles, and the associated coefficient function showed an increas-
ing linear trend. Per each one-year increase in age, the 1st and 5th percentile of IC
decreased by about 0.014 and 0.013 liters respectively, while its median decreased
by about 0.01 liters. Height and BMI both had a positive effect. Quantile regression
coefficients were increasing, but had a non linear trend. For each one-centimeter in-
crease in height, quantiles below the median increased by approximately 0.03 liters.
For each unit increase of BMI, IC increased by 0.033 and 0.037 at the 1st and 5th
percentile, respectively, and by 0.056 at the median. The coefficient function asso-
ciated with the indicator of male gender was positive and increasing. This indicated
that the distribution of IC in males was shifted towards upper values and had a longer
right tail than that of females.
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Fig. 1 ILM estimates of βββ (p) under the model selected by BIC. Confidence bands are displayed as
shaded areas. The broken lines connect the coefficients of ordinary quantile regression estimated
at a grid of quantiles. The dashed line indicates the zero.

Finally, comparing our proposal with standard penalized quantile regression [1,
8] we could observe that it is inefficient and makes it difficult to interpret results, as
already mentioned in the introduction. Indeed, different variables are discarded for
each percentile, i.e., sex and wheeze for p = 0.01, none for p = 0.05 and, smoke,
occupational exposure, cough and wheeze for p = 0.50.
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Table 2 Estimated quantile regression coefficients at p = 0.01, p = 0.05 and p = 0.50, obtained
from the model selected by BIC. Estimated standard errors in brackets. The asterisk (∗) denotes
significance less than 0.05.

p = 0.01 p = 0.05 p = 0.50

Intercept 1.539(0.049)∗ 1.893(0.029)∗ 2.567(0.018)∗

Age −0.014(0.002)∗ −0.013(0.001)∗ −0.010(0.001)∗

Height 0.026(0.003)∗ 0.027(0.003)∗ 0.029(0.002)∗

BMI 0.033(0.005)∗ 0.037(0.004)∗ 0.056(0.004)∗

Male 0.273(0.061)∗ 0.291(0.051)∗ 0.462(0.033)∗

5 Discussion

We described a penalized approach that can be applied to the QRCM framework in-
troduced by [5]. Modeling the conditional quantile function parametrically can be
more efficient than estimating quantiles one at a time, as in ordinary quantile regres-
sion. Moreover, it permits performing model selection directly on the parameters
that describe conditional quantiles, instead of proceeding quantile-by-quantile, as
the penalized methods for quantile regression proposed so far.

Using this approach has the disadvantage that, as each covariate has multiple as-
sociated parameters, the number of model coefficients tends to be large. The PILM
estimator demonstrated to select the correct model with a high probability. A com-
putationally efficient algorithm is implemented in the qrcmNP package in R.
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