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1 Introduction

Modeling and forecasting the temporal dependence in conditional second moments

have key relevance in many areas of finance, in active portfolio management, in par-

ticular. Markowitz’s (1952) optimal asset allocation, which requires forecasts of the

first and second moments, has been extensively tested on low-frequency data with

unsatisfying results. Focusing on first moments, i.e. expected returns, the use of

in-sample (IS) estimates as forecasts usually leads to extreme weights which result

in poor portfolio performances out-of-sample1 (OOS). In order to contain forecast

errors2 and their negative effects on OOS portfolio performance, the literature has

investigated a variety of approaches over the years: Bayesian diffuse priors, priors

from asset pricing models, shrinkage, constraints from the factor structure of returns

and the imposition of short-selling constraints, to mention a few. However, despite

such efforts, the OOS evaluation of a representative number of these approaches3 by

De Miguel et al. (2009) documents that none of them can consistently outperform

the näıve equally-weighted portfolio: gains from optimal diversification are still offset

by forecast errors. Furthermore, simulating a case calibrated on US data, the same

paper shows that all the approaches considered, including Markowitz’s mean-variance

portfolio, require around 3,000 (6,000) observations for a portfolio with 25 (50) assets

to outperform the näıve strategy.

Since this seminal study, the literature has continued to investigate approaches

that mitigate the negative impact of forecast errors. The shrinkage portfolio approach

has been reconsidered and further developed by Behr et al. (2013) who include con-

straints, by De Miguel et al. (2013) who consider the shrinkage of the mean and the

variance-covariance matrix, and by De Miguel et al. (2014) who propose a multi-

period shrinkage portfolio explicitly constructed around parameter uncertainty. Tu

and Zhou (2011) advance the idea of shrinking the theoretically optimal portfolio

weights toward the equal weights of the näıve strategy. Also focusing on portfolio

1For a review relating theoretical portfolio choices to the data see Brandt (2007).
2In the literature, future expected returns are set equal to their sample averages over a given time

period. In such setup reduction of the forecast errors corresponds to the reduction of the estimation
error in average returns. However, since the ultimate goal is to reduce forecast errors, throughout the
paper we directly refer to forecast errors instead of the more customary, but less general, estimation
error.

3The Bayes-Stein shrinkage portfolio of Jorion (1985, 1986), the Bayesian portfolio based on belief
in an asset-pricing model of Pástor (2000) and Pástor and Stambaugh (2000), the portfolio implied
by asset-pricing models with unobservable factors of MacKinlay and Pástor (2000), the three-fund
portfolio of Kan and Zhou (2007) and portfolio strategies with short-selling constraints.
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weights are Brandt et al. (2009) who propose to directly model each asset’s port-

folio weight as a function of its size, value and momentum characteristics. On the

wake of this idea, Behr et al. (2012) suggest to consider industry- rather than firm-

characteristics, to change the procedure with which the assets are ranked and to

incorporate no short selling constraints. Other approaches range from Bouaddi and

Taamouti (2013), who investigate the role of economic latent factors influencing in-

vestment decisions, to De Miguel et al. (2010), who use option-implied volatility, risk

premium and skewness to adjust expected returns, and Kirby and Ostdiek (2012),

who construct low turnover portfolios based on volatility and reward-to-risk timing.

When turning to second moments, forecasting variance-covariance matrices (the

other ingredient of portfolio optimization), is a different story. The evidence stem-

ming from the early works of Engle (1982) and Bollerslev (1986) is that conditional

variance models can produce accurate variance forecasts4. Even better forecasts may

be obtained by modeling one of the different flavors of realized variance measures

derived from high-frequency data5.

Similarly, since the Dynamic Conditional Correlations (DCC) model (Engle, 2002b),

correlation forecasts have proved to be quite accurate. Inherent to the modeling of

positive definite conditional correlation matrices is the trade-off between parameter

parsimony and richness in the description of the second order dynamics. In fact,

the number of parameters to be jointly estimated is a power function of the cross-

sectional dimension M : even with correlation targeting,6 the order of parameters to

be estimated in the full, diagonal and scalar versions of DCC is M2, M1 and M0,

respectively7. Analogously to the case of conditional variances, accurate multivari-

ate realized measures of conditional covariances and correlations may be computed

from high-frequency observations as in Barndorff-Nielsen et al. (2011) and directly

modeled8.

4For a review of forecasting with GARCH models see Andersen et al. (2006), Bauwens et al.
(2012) and Teräsvirta (2012).

5Amongst the various approaches to volatility modeling that make use of realized measures
are the Heterogeneous Autoregressive model (HAR) of Corsi (2009) and Corsi et al. (2012), the
Multiplicative Error Model (MEM) of Engle (2002a) and Brownlees et al. (2012) and the HEAVY
of Shephard and Sheppard (2010), as a particular case of the vector-MEM of Cipollini et al. (2013).
For a survey see Andersen et al. (2003) and Park and Linton (2012), among others.

6In the original formulation of Engle and Mezrich (1996), variance targeting consists in setting
a univariate volatility model’s unconditional variance equal to its sample counterpart. Similarly,
correlation targeting consists in setting a multivariate correlation model’s unconditional correlation
matrix equal to its sample counterpart, thus eliminating M(M − 1)/2 parameters from the opti-
mization procedure.

7For a review of Multivariate GARCH models see Bauwens et al. (2006).
8Numerous approaches to the modeling and forecasting of realized covariances and correlations
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In this paper we focus on modeling and forecasting conditional second moments

for optimal portfolio allocation. In particular, we consider the portfolio allocation

problem of a day trader type of investor who closes positions at the end of each trading

day. By so doing, we can ignore pre–market or after–hours exchanges (which follow

a different price formation dynamics and for which high-frequency observations are

not available); moreover, it allows us to neatly bypass all potential problems arising

from short positions that stretch over long periods of time, as is the case in most of

the previously cited studies. In the general setup of the paper we discuss the case

of the mean-variance efficient portfolio; in the empirical application we concentrate

on the minimum-variance portfolio allocation, isolating the role of conditional second

moments forecasts to the optimal allocation problem.

As novel contributions to this literature, we propose modeling the conditional

inverse correlation matrix (DCIC), and we introduce the Dynamic Conditional Weights

(DCW), a new multi-step modeling approach directed at optimal portfolio weights:

when associated with suitable estimation procedures, it entirely circumvents the curse

of dimensionality problem.

The paper is organized as follows. Section 2 introduces the optimal portfolio allo-

cation problem. Models of the conditional second moments are presented in Section 3,

while the direct modeling of the portfolio weights is introduced in Section 4. Parame-

ter estimation is based on suitable objective functions which are discussed in Section

5. Measures of performance, data, and empirical results are described in Sections 6,

7 and 8, respectively. Section 9 concludes.

2 Optimal Portfolio Allocation

Let rt be the (M × 1) vector of log–returns in excess of the risk-free rate. The

conditional mean and variance-covariance matrix of rt are denoted by µt and Ωt,

respectively. Investors, whose preferences are fully described by the portfolio’s mean

and variance, choose portfolio weights wt to maximize expected quadratic utility:

Vt = w′tµt −
γ

2
w′tΩtwt

are either extensions of univariate realized variance models, adaptations of Multivariate GARCH
models or both. Proposed modeling approaches are the fractionally integrated processes of Chiriac
and Voev (2011), the vector autoregressions of Callot et al. (2017) and the specifications based on
the Wishart distribution of Gourieroux et al. (2009), Golosnoy et al. (2012), Noureldin et al. (2012)
and Jin and Maheu (2013), among others.
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where γ is the investor’s risk aversion. The optimal weights are wt = γ−1Ω−1
t µt from

which it may be seen that the level of risk aversion only determines the portfolio

leverage, that is the fraction of wealth invested in the risk-free asset and the fraction

to be invested across the risky assets. Consequently, the optimal relative portfolio

weights ωt, which define the optimal allocation within the risky assets, do not depend

on risk aversion:

ωt =
ι′Ω−1

t µt

|ι′Ω−1
t µt|

where ι is the (M × 1) unit vector. Notice that the weights ωt are equally optimal for

investors that either fix the portfolio expected return and choose ωt to minimize the

variance or fix the portfolio variance and choose ωt to maximize the expected return.

If expected returns may be treated as neither statistically nor economically different

across assets, then the vector of expected returns may be expressed as µt = mt · ι,
where mt is a scalar. In turn, the vector of optimal relative portfolio weights becomes:

ωt =
ι′Ω−1

t ι

|ι′Ω−1
t ι|

which corresponds to the allocation that minimizes the portfolio variance9. It must be

emphasized that the minimum-variance portfolio has value beyond didacticism. First

and foremost, bypassing the forecasts of expected returns allows to clearly evaluate the

contribution of second moments modeling and forecasting to the optimal allocation.

Second, empirically, the minimum-variance allocation has often been found to perform

equally well as, if not better than, the mean-variance, even when measured in terms

of Sharpe ratios10.

3 Modeling Conditional Second Moments

Prior to the availability of high-frequency data and the development of the result-

ing realized measures, information about the conditional second moments had to be

extracted, in general, from the outer product of the returns or their residuals after

some filtration. This aspect has been crucial in forcing the specification design of the

various modeling approaches to Ωt. High-frequency data, instead, makes it possible

9This allocation may also be seen as the limiting case of shrinkage estimators where all means
are shrunk toward the common mean. Similarly, when all wealth is invested in risky assets (w′tι =
1⇒ ωt =wt) and µt = mt · ι, the absolute portfolio weights that maximize expected quadratic utility
correspond to the minimum-variance allocation.

10See De Miguel et al. (2009), De Miguel et al. (2013) and De Miguel et al. (2014)
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to directly model Ω−1
t provided that the realized measures are full rank11. Investi-

gating the modeling possibilities of Ω−1
t and their forecasting performances has value

beyond that of an exercise in active portfolio management. Considering the case of

the optimal mean-variance portfolio weights as a function of the inverse conditional

variance-covariance matrix, two distinct modeling approaches emerge:

1. The standard decomposition of the conditional variance-covariance matrix in

terms of standard-deviation Dt and correlation Rt matrices:

Ω−1
t = D−1

t R−1
t D−1

t (1)

2. The alternative decomposition of the inverse conditional variance-covariance

matrix in terms of diagonal D̃t and correlation R̃t matrices:

Ω−1
t = D̃tR̃tD̃t (2)

The decompositions in equations (1) and (2) are linked by the existence of the unique

diagonal matrix Ft such that D̃t = D−1
t Ft and R̃t = F−1

t R−1
t F−1

t . Specifically: D−1
t

of equation (1) collects the inverse conditional standard-deviations of the individual

returns but R−1
t is not a correlation matrix albeit being symmetric and positive defi-

nite; on the other hand, in equation (2), D̃t collects the inverse conditional standard-

deviations of linear combinations of all returns and R̃t is a correlation matrix. In

what follows we will focus on the standard decomposition of equation (1). Following

the Multivariate GARCH literature, separation of conditional variances and correla-

tions is maintained throughout the paper to allow for at least a two-step estimation

procedure to ease the curse of dimensionality problem. Dt may be modeled element-

by-element while the components of Rt may be modeled either jointly, as in DCC,

or element-by-element in the order prescribed by the Sequential Conditional Cor-

relations (SCC) decomposition of Palandri (2009). The use of high-frequency data

and realized measures allows to expand these pre-existing possibilities to the direct

modeling12 of R−1
t . From a computational perspective, this is more convenient than

modeling Rt whenever the objective function of the estimator requires calculations of

the inverse, as in Section 5.2.

11Although realized measures that are not full rank are not immediately invertible, there are
expedients that may be used to circumvent this deficiency such as pre-averaging.

12Abandoning invertibility and positive definiteness, R−1t may be modeled and estimated element-
by-element without necessarily hindering its usefulness as is the case for Rt. We leave these modeling
possibilities at a declaration stage and focus instead on specifications of R−1t that preserve invert-
ibility and positive definiteness.
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3.1 Variance Modeling

Let σ̂2
i,t be a realized measure of the variance of asset i at time t and σ2

i,t ≡ Et−1[σ̂2
i,t]

its conditional expectation at (t − 1). For comparison purposes, we consider the

following dynamic (1,1) specifications13:

1. The Garch parameterization of σ2
i,t:

σ2
i,t = ci + αi · σ̂2

i,t−1 + βi · σ2
i,t−1

2. The LnGarch which parameterizes the log-conditional variance:

ln(σ2
i,t) = ci + αi · ln

(
σ̂2
i,t−1

)
+ βi · ln(σ2

i,t−1)

3. The InvGarch parameterization of the conditional precision σ−2
i,t , the quantity

entering the optimal portfolio weights equation:

σ−2
i,t = ci + αi · σ̂−2

i,t−1 + βi · σ−2
i,t−1

4. As a benchmark to the above specifications we consider the popular Har of Corsi

(2009) which models the conditional variance σ2
i,t as function of past realizations

over daily, weekly and monthly time intervals:

σ2
i,t = ci + αi,1 · σ̂2

i,t−1 + αi,2 ·
1

5

5∑
j=1

σ̂2
i,t−j + αi,3 ·

1

22

22∑
j=1

σ̂2
i,t−j

3.2 Dynamic Conditional Correlations Modeling

Let R̂t be a realized measure of the correlation matrix of M assets at time t and

Rt ≡ Et−1[R̂t] its conditional expectation at (t− 1). The DCC(1,1) parameterization

with targeting models Rt according to:

Rt =
(
R− ARA′ −BRB′

)
+ AR̂t−1A

′ +BRt−1B
′ (3)

where R is the sample unconditional correlation matrix and A and B are either

full, diagonal or scalar matrices of parameters. For scalar and diagonal matrices of

coefficients, Rt on the left-hand-side of equation (3) is guaranteed to be a correlation

matrix. The same is not true when the matrices of coefficients are full. In this case,

the left-hand-side quantity of equation (3) is standardized by the elements on its main

diagonal to produce a correlation matrix.

13These are well suited in the empirical applications as highlighted by Hansen and Lunde (2005);
in general, further lags could be considered.
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3.3 Dynamic Conditional Inverse Correlations Modeling

An alternative to DCC that circumvents the trade-off between parameter parsi-

mony and richness in the description of the second order dynamics is the SCC which

decomposes Rt into correlations and partial correlations. This eliminates the curse of

dimensionality by allowing for multi-step estimation of such elements and straight-

forward reconstruction of positive definite correlation matrices. Here, we prefer to

follow a different path, although applying the SCC methodology to realized correla-

tion matrices would be straightforward.

In the context of portfolio optimization, rather than modeling Rt and then calcu-

lating its inverse, it makes sense to model R−1
t directly, using realized measures. We

thus introduce the Dynamic Conditional Inverse Correlation DCIC (1,1) specification

with targeting:

R−1
t =

(
R
−1 − AR−1

A′ −BR−1
B′
)

+ AR̂−1
t−1A

′ +BR−1
t−1B

′ (4)

While a linear combination of correlation matrices is a correlation matrix itself, the

same is not true for their inverses14. Although this aspect is of no relevance for the

estimation procedure, proper forecasts of inverse correlation matrices may be obtained

following the same standardization procedure of low-frequency Dynamic Conditional

Correlations. Specifically, the legitimate inverse correlation matrix
◦
Rt
−1 is given by:

◦
Rt
−1 =

◦
Dt R

−1
t

◦
Dt

where
◦
Dt is a diagonal matrix with elements equal to the square-root of the diagonal

elements of
[
R−1
t

]−1
.

4 Dynamic Conditional Weights Modeling

A different approach is one in which we conveniently model the conditional port-

folio weights directly. We thus suggest a Dynamic Conditional Weights DCW speci-

fication. Let ŵt be the (M × 1) vector of realized optimal portfolio weights at time

t and wt ≡ Et−1[ŵt] its conditional expectation at (t − 1). Consistently with the

corresponding literature, the conditional expected returns µt may be treated as slow-

moving relative to daily frequencies. Therefore, the return forecasts µ̂t may be set

14If X and Y are correlation matrices and λ a scalar, it follows that λX+(1−λ)Y is a correlation
matrix while, in general, (λX−1 + (1− λ)Y −1)−1 is not a correlation matrix.
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equal to µ for every t over some time interval T coherent with long-horizon pre-

dictability. As a result:

wt = Ω−1
t µ and ŵt = Ω̂−1

t µ

Assuming that the elements of Ω−1
t follow a common GARCH–type process15 yields:

wt =
[
Ω−1 + αΩ̂−1

t−1 + βΩ−1
t−1

]
µ

= κ+ αŵt−1 + βwt−1 (5)

where Ω̂−1
t−1 is the inverse of the realized variance-covariance matrix. It is straight-

forward to generalize the dynamic specification of equation (5) to relative portfolio

weights, higher order lags and non-scalar matrices of coefficients. In particular, let

ω̂t be the (M × 1) vector of relative realized optimal portfolio weights at time t and

ωt ≡ Et−1[ω̂t] its conditional expectation at (t− 1). Then, the (1,1) parameterization

with targeting is:

ωt = (I − A−B)ω + Aω̂t−1 +Bωt−1 (6)

where ω is the sample average of the optimal weights and A and B are either full,

diagonal or scalar matrices of parameters. When the matrices A and B are scalar, the

elements of ωt from equation (6) will add to unity by construction as long as ι′ω0 = 1.

In all other cases, ι′ωt 6= 1 and the standardization of the weights ωt/(ι
′ωt) is needed

in both phases of estimation and forecasting.

The proposed direct conditionally autoregressive modeling of the optimal portfolio

weights may be seen as a dynamic extension of Brandt et al. (2009) who introduce a

static model for the portfolio weights. In their model the explanatory variables come

from the asset-pricing literature, which are, at best, predictive for the conditional

expected returns component but leave the conditional expected variance-covariance

matrix component uncovered.

Our approach is computationally less demanding than going through conditional

correlations, as it only requires the modeling of a number of dynamic components

equal to the cross-section of the data. It is even easier to implement than SCC, as

it does not require to follow the specific decomposition of the conditional correlation

matrix in SCC. Therefore, direct modeling of the weights is no more complicated than

a factor model within the Arbitrage Pricing Theory framework.

15The persistence in the dynamics of financial objects of interest has found in the conditionally
autoregressive structure of GARCH convenient and successful adaptation/generalization to other
contexts than conditional variances: cf. Autoregressive Conditional Durations (Engle and Russell,
1998), Multiplicative Error Models (Engle, 2002) on positive valued processes, conditional quantiles
(Engle and Manganelli, 2004), Generalized Autoregressive Scores, (Creal et al., 2013)
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5 Objective Functions

The parameters of the models of sections 3 and 4 may be estimated, among others,

by Least Squares (LS) or Quasi Maximum Likelihood (QML). While QML estimation

may be appealing for its theoretical properties16, the LS estimator is particularly at-

tractive for the ease and speed with which it delivers the parameters’ point estimates.

Next to these, for the DCW only, we explore the possibility of using the portfolio

variance (OP) itself as the estimator’s objective function.

5.1 Least Squares (LS)

The LS objective function simply measures the distance between predictions and

realizations. For the estimation of conditional variance models:

T∑
t=1

[
f(σ2

i,t)− f(σ̂2
i,t)
]2 ∀i = 1, . . . ,M

where f is the identity function for Garch and Har, the inverse function for InvGarch

and the logarithmic function for LnGarch. Similarly, for the estimation of the condi-

tional correlation models:

T∑
t=1

M∑
i=1

M∑
j=i

[
Ri,j,t − R̂i,j,t

]2

(7)

Notice that, for the DCC specifications, the elements on the main diagonal are equal

to unity both in Rt and R̂t and therefore cancel out. On the other hand, should

equation (7) be used to estimate DCIC specifications, elements on the main diagonal

would not cancel out. Specifically, the distinct M(M − 1)/2 correlations of Rt are

non-linearly mapped into the M(M + 1)/2 on- and off-diagonal elements of R−1
t . As

M grows, the LS objective function of equation (7) gives relatively less weight to the

diagonal elements and more weight to those off-diagonal. Precisely, the weight of the

elements on the main diagonal, relative to those off-diagonal, is 2/(M−1). Therefore,

unless the dynamic properties of all the elements of R−1
t are the same, for large M , the

LS objective function specified in equation (7) will squander the information content

of the elements on the main diagonal. This aspect clearly suggests the need for a

different quadratic distance, agreeably one specially designed for inverse correlation

16Quadratic-exponential density functions guarantee consistency of the parameters’ estimates and
when the true density is similar to the chosen quasi likelihood function the efficiency of the QML
estimator may be expected to be similar to that of Maximum-Likelihood.
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matrices. With no presumption of exhaustively addressing this delicate issue here,

we introduce the following simple rebalancing of the elements of the LS objective

function for DCIC specifications:

T∑
t=1

{
(M − 1)

2

M∑
i=1

[
R−1
i,i,t − R̂−1

i,i,t

]2

+
M∑
i=1

M∑
j=i+1

[
R−1
i,j,t − R̂−1

i,j,t

]2
}

(8)

The LS estimation of the DCW model of equation (6) may be easily performed

from the objective function:
T∑
t=1

M∑
i=1

[ωi,t − ω̂i,t]2

With diagonal matrices of coefficients, DCW simplifies to an extremely convenient

element-by-element modeling with LS objective functions:

T∑
t=1

[ωi,t − ω̂i,t]2 ∀i = 1, . . . ,M

5.2 Quasi Maximum Likelihood (QML)

The concentrated Gaussian log-likelihood function for the estimation of the con-

ditional variance models of Section 3.1 is given by:

−
T∑
t=1

[
lnσ2

i,t +
σ̂2
i,t

σ2
i,t

]
∀i = 1, . . . ,M

where σ2
i,t and σ̂2

i,t are the conditional- and the realized-variance, respectively. Sim-

ilarly, the concentrated Gaussian log-likelihood function17 for the estimation of the

conditional models of Sections 3.2 and 3.3 is given by:

−
T∑
t=1

[
ln |Rt|+ TR

(
R−1
t R̂t

)]
(9)

where TR is the trace and Rt and R̂t are the conditional and the realized correlation

matrices, respectively. For non-trivial cross sectional dimensions M , the QML estima-

tion of DCC specifications is hindered by the computationally intensive calculations

of the determinant and the inverse of Rt at every t and for every iteration of the op-

timizer. On the other hand, QML estimation of DCIC specifications are substantially

17The same Gaussian likelihood is used by Noureldin et al. (2012) for the estimation of multivariate
HEAVY models.
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less intensive as they do not require matrix inversions: R−1
t is readily available and

ln |Rt| = − ln |R−1
t |.

For comparative purposes, the DCW specification of Section 4 may also be recon-

ducted to a QML estimation. In particular, since the portfolio weights ωi,j and ω̂i,j

span (−∞,+∞), their Fisher transformations18 χi,t and χ̂i,t span (−1,+1). There-

fore, treating χi,t and χ̂i,t as conditional and realized correlations, respectively, QML

estimations of the model parameters may be performed using the bivariate specifica-

tion of the Gaussian log-likelihood function of equation (9):

−
T∑
t=1

M∑
i=1

[
ln(1− χ2

i,t) + 2 · 1− χi,tχ̂i,t
1− χ2

i,t

]
With diagonal matrices of coefficients, DCW results in an extremely convenient element-

by-element modeling with QML objective functions:

−
T∑
t=1

[
ln(1− χ2

i,t) + 2 · 1− χi,tχ̂i,t
1− χ2

i,t

]
∀i = 1, . . . ,M

Construction of the Gaussian log-likelihood functions may be found in Appendix A.2.

5.3 Portfolio Optimization (OP)

The parameters of the minimum-variance DCW specification may be estimated by

minimizing the overall portfolio variance (OP):

T∑
t=1

ω′tΩ̂tωt (10)

On the one hand, this objective function19 has the appealing property of training the

weights specifications to optimize given properties of the portfolio that are of primary

interest. On the other hand, it has the same drawback of the QML approach as it

does not avoid jointly estimating the model parameters. In fact, for DCC and DCIC,

the objective function (10) would require the impractical joint estimation of all the

conditional variance and conditional correlation models. For this reason, feasibility

and goodness of the objective function of equation (10) are evaluated in the empirical

analysis only for DCW.

18The Fisher transformation of ωi,t is χi,t = (e2ωi,t−1)·(e2ωi,t +1)−1 from which mutatis mutandis
follows that of ω̂i,t.

19Similarly, for the mean-variance portfolio, the DCW specification may be estimated by maxi-

mizing the quadratic utility:
∑T
t=1

[
w′tµ̂t −

γ
2w′tΩ̂twt

]
.
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6 Measures of Portfolio Performance

6.1 Portfolio Variance (PV)

One measure of OOS performance is the average portfolio variance20 that emerges

from choosing model or model-combination κ:

PVκ =
1

T

T∑
t=1

ωκ,tΩ̂tωκ,t

where t = 1, . . . , T is the OOS period, ωκ,t are the forecasts of the optimal portfolio

weights from model or model-combination κ and Ω̂t is the OOS realized variance-

covariance matrix.

6.2 Certainty Equivalent Return (CEQ)

Another common measure of OOS performance is the certainty equivalent return.

Defined as the certain return that an investor is willing to accept in order to abandon a

risky strategy, the certainty equivalent return highlights reward-to-risk too, although

in a different manner. Similarly, the certainty equivalent return may be defined as

the certain return that an investor is willing to accept to switch from model or model-

combination κ1 to κ2:

CEQκ1→κ2 =
1

T

T∑
t=1

[
ω′κ1,tµ̂t −

γ

2
ω′κ1,tΩ̂tωκ1,t − ω′κ2,tµ̂t +

γ

2
ω′κ2,tΩ̂tωκ2,t

]
(11)

If the certainty equivalent return is positive (negative), the investor requires an av-

erage payment of (is willing to pay) CEQκ1→κ2 to switch from κ1 to κ2. Coherently

with the aim of this study, an OOS measure that only captures second moment effects

may be obtained either by ignoring the OOS excess returns, or by imposing that they

are the same across specifications: ω′κ,tµ̂t = µ̃t for every κ. Therefore, equation (11)

simplifies to:

CEQκ1→κ2 = γ · 1

2
(PVκ2 − PVκ1) (12)

With this formulation, reporting CEQκ1→κ2 for γ = 1 allows for the immediate cal-

culation of the certainty equivalent return for any value of risk aversion21 simply by

rescaling the reported value by γ.

20A common measure of the OOS portfolio performance is the Sharpe ratio which highlights the
reward-to-risk. However, given that in this study we concentrate exclusively on the contribution of
the conditional second moments to optimal portfolio formation, we deem it more appropriate to use
a measure of OOS performance that captures second moment effects only.

21For example, De Miguel el al. (2009) consider risk aversion coefficients of γ = {1, 2, 3, 4, 5, 10}.
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6.3 Turnover (TO)

In this study, where the focus is on daily trading with no overnight holdings, we

have zero portfolio weights prior to rebalancing. Hence, average turnover is given by:

TOκ =
1

T

T∑
t=1

M∑
j=1

|ωκ,j,t|

which is a measure of the average portfolio leverage LV κ
22 of the forecasting model

κ.

6.4 Break-Even Transaction Costs (BETC)

Let us first introduce the number of shares nκ,j,t of asset j purchased or sold at

the beginning of trading day t in accordance to the forecasts of model κ: nκ,j,t =

|ωκ,j,t|/P o
j,t , given the opening price of the asset P o

j,t . Assuming markup transaction

costs τ 23, it follows that the associated cost is τnκ,j,tP
o
j,t = τ |ωκ,j,t|. Similarly, the cost

arising from closing the position at the end of the day is τnκ,j,tP
c
j,t = τ(1+R oc

j,t )|ωκ,j,t|,
where P c

j,t and R oc
j,t are the closing price and the open-to-close return in t of asset j,

respectively. Summing open and close costs for each asset j gives the transaction costs

of holding the portfolio of model κ. Averaging over T , we get the average transaction

costs of the forecasting model κ:

TCκ = τ · 1

T

T∑
t=1

M∑
j=1

(2 +R oc
j,t ) · |ωκ,j,t| (13)

As shown in Appendix A.3, TCκ may be approximated up to two orders of magnitude

by TCκ:

TCκ ≈ 2τ · TOκ

Combining the above with equation (12) allows to derive the net certainty equivalent

return:

NCEQκ1→κ2 = γ · 1

2
(PVκ2 − PVκ1) + 2τ (TOκ2 − TOκ1) (14)

The break-even transaction cost (BETC) is defined as the value of τ > 0 that sets

equation (14) to zero:

BETCκ1→κ2 = −γ
4
· PVκ2 − PVκ1
TOκ2 − TOκ1

22Defining the semi-leverage 1
2LVκ,t ≡ −

∑
ω<0 ωκ,j,t and considering that the portfolio weights

add to unity, it follows that: TOκ = 1 + LV κ.
23For investors trading large volumes in equity markets, average markup transaction costs, as

defined in Section 6.4, usually range between 3 to 10 basis points and average around 5 and 6 basis
points.
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7 Data

The data used for portfolio selection pertains to M = 28 of the 30 constituents of

the Dow Jones 30 Index. The sample has 12 years of high-frequency daily observations

from 01/03/2005 to 12/31/2015 for a total of 2768 days. The two series, with tickers

TRV and V, are not included in the study because they are not available for the full

sample period24. Tickers of the 28 included stocks are reported in Table 1 together

with their sector. The raw tick-by-tick TAQ data is cleaned using the procedure

of Brownlees and Gallo (2006) from which realized kernel covariances are computed

following the approach of Barndorff-Nielsen et al. (2011). Details on this procedure

may be found in Appendix A.1.

The sample is split into six 5-year IS periods: 2005-2009 (1259 obs.), 2006-2010

(1259 obs.), 2007-2011 (1260 obs.), 2008-2012 (1259 obs.), 2009-2013 (1258 obs.) and

2010-2014 (1258 obs.). All model combinations are estimated on each of the six IS

periods, and for each of them, OOS forecasts are generated for the following 1-year

period: 2010 (252 obs.), 2011 (252 obs.), 2012 (250 obs.), 2013 (252 obs.), 2014 (252

obs.) and 2015 (251 obs.).

The large cap characteristic and the number of stocks considered are in line with

those of the assets examined in De Miguel et al. (2009). Specifically, the assets

they use to construct the optimal portfolios are portfolios themselves and therefore

primarily large caps: 10 sector portfolios, 10 industry portfolios, 8 country indices

and 20 size and book-to-market portfolios treated as separate data-sets. Similarly,

the various cross-sections of assets in their study range between M = 3 and M =

24. In the design of our study, M = 28 allows for the comparison of DCW with

standard parameterizations that suffer from the curse of dimensionality whenever

flexible dynamics of the various components are needed. Furthermore, since the

correlations of large caps are expected to co-move more than those between large and

small caps, the chosen data-set is, at least in theory, tailor-made for the Scalar DCC

making it a challenging benchmark for competing models.

24TRV data are available only from 02/26/2007 while V data are missing from 08/04/2006 to
02/26/2007.
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8 Results

For all approaches introduced earlier, the OOS portfolio variances25 PV are re-

ported in Tables 2-5, the OOS certainty equivalent returns CEQ in Tables 6-9, the

turnover TO in Tables 10-12, the OOS break-even transaction costs BETC in Tables

13-15. All statistical tests presented have been bootstrapped with 10,000 replications.

Unless otherwise stated, the comparisons are statistically significant at any level.

8.1 VT Forecasts

Results for Volatility Timing (VT) approaches, which forecast the conditional vari-

ances but set the conditional correlation matrix to the identity matrix, are reported in

Table 2 for all the variance specifications of Section 3.1 estimated by LS and QML. VT

produces portfolio variances that are statistically less than those of the Naive portfolio

and which range between -14.34% and -16.08%. LnGarch and InvGarch produce OOS

portfolio variances that are smaller than those of Garch and Har. Table 6 reports the

CEQ value of switching from Naive to VT. Overall, the switch is worth between 3.63

and 4.07 daily basis points (bps). Gains are positive for every variance specification,

objective function and sub-period. Notice that turnover TO is 1 by construction for

VT strategies as there is no short selling.

8.2 DCC Forecasts

Portfolio variances PV from the DCC modeling of the conditional correlation ma-

trix are reported in Table 3. In each of the four panels, the gains with respect to

the Naive strategy are significant for every variance specification, objective function

and sub-period. The magnitude of the gains is also substantial, and ranges from a

40.31% to a 44.47% reduction in the portfolio variance. This is more than double

the reduction achieved by the VT strategy. In fact, with respect to the best perform-

ing VT specification, gains from DCC modeling range between 28.88% and 33.84% in

variance reduction. Overall there are no major PV differences between the Scalar- and

25In the literature on forecasting expected returns, there is consensus that the poor performance
of theoretically optimal portfolio allocation is due to sizable forecasting errors. De Miguel et al.
(2009) find that portfolio strategies incorporating short sale constraints perform much better than
unconstrained policies trying to incorporate estimation or forecasting errors. Therefore, although
we do not present the extended results here, we have investigated the performance of portfolios
with short sale constraints as an indirect measure of the magnitude of potential forecasting errors.
What we found is a deterioration of the resulting portfolio variances for all specifications considered
ranging between +6.5% and +14%. Therefore, in our setting, benefits from short sale constraints,
in terms of reduction of forecasting errors, are outbalanced by the portfolio’s loss of efficiency.
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Diagonal-DCC specifications. On the other hand, it does emerge that LnGarch LS de-

livers portfolio variances that are statistically smaller than those of the other variance

models (the only exception is the InvGarch LS in the QML-estimated DCC specifica-

tions). In general, LS estimation produces better results than QML, and, as expected,

the Diagonal parameterization of DCC does not add significantly to the forecasts of

the scalar parameterization.

Table 7 reports the CEQ value of switching from VT to DCC modeling and fore-

casting. The switch is worth between 6.46 and 7.19 daily bps. Gains are positive

and significant for every variance specification, objective function and sub-period.

Average daily turnover TO is reported in Table 10 and ranges between 1.31 and 1.74.

The fact that DCC optimal portfolios have been constructed without taking into

account transaction costs and turnover requires to take the BETC results, reported

in Table 13, cum grano salis. DCC modeling is preferred to VT for transaction costs

of less than 5.5 bps. However, if the investor’s risk aversion γ is 2 or greater and

transaction costs are no more than 10 bps, DCC is preferred to VT for any variance

specification.

8.3 DCIC Forecasts

Since the estimation of DCIC has highlighted parameter estimates tending towards

integrated processes, the constraints ai = 1− bi for every i were imposed to equation

(4). Portfolio allocation from DCIC modeling, reported in Table 4, exhibits significant

PV reductions between 40.61% and 44.31% with respect to the Naive strategy and

between 29.33% and 33.65% with respect to the best performing VT. Again, the best

allocation is achieved by modeling the conditional variances as LnGarch LS. With

respect to that of DCC, the PV are significantly smaller when both models are QML-

estimated regardless of the conditional variance specification. On the other hand,

when DCC and DCIC are LS-estimated, the PV of DCIC are significantly larger in

11/16 cases at 10%, 7/16 cases at 5% and 3/16 cases at 1%. These results highlight

that if QML is the chosen method of estimation, DCIC is not only computationally

more convenient but it may also generate better allocations than DCC. On the other

hand, if LS is chosen, DCC is superior to DCIC. This finding confirms that DCIC

needs an ad hoc LS objective function that may reconcile the weights assigned to

the on- and off-diagonal elements of the correlation matrices in a more effective way

than that adopted in equation (8). This being said, comparing the best performing

DCC specification in each of the four panels of Table 3 with the corresponding DCIC,
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relative to the former, the latter never exhibits PV that are more than 1% larger.

The CEQ of Table 8 confirm that the differences between DCC and DCIC are

relatively marginal. On the one hand, the most an investor is willing to pay is 0.07

daily bps, statistically significant, to switch from DCIC Diagonal LS + Garch QML to

Diagonal DCC LS + Garch QML. On the other hand, the most an investor is willing

to pay is 0.21 daily bps, statistically significant, to switch from Diagonal DCC QML +

InvGarch QML to Diagonal DCIC QML + InvGarch QML. Average daily turnover TO

is reported in Table 11 and ranges between 1.31 and 1.80 (similarly to DCC).

BETC of Table 14 show that, when LS-estimated, DCIC is never preferred to DCC

due to higher portfolio variance PV and turnover TO. On the other hand, when

QML-estimated, DCIC is preferred for low transaction costs. Since the break-even

transaction costs of Table 14 need to be multiplied by γ, DCIC would be preferred to

DCC (for most variance specifications) when γ ≥ 5 and average transaction costs of

5-6 bps.

8.4 DCW Forecasts

Portfolio allocation from the direct dynamic modeling of the portfolio weights are

reported in Table 5. PV reductions range between 43.97% and 44.72% with respect

to the Naive strategy and between 33.24% and 34.13% with respect to VT. None of

the DCW specifications of Table 5 exhibits a performance that is statistically different

from the best DCC specification Scalar DCC LS + LnGarch LS. Furthermore, in the

direct modeling of the weights, the objective function OP produces OOS variances

that are smaller than those of LS and QML. Nevertheless, LS exhibits a more than

reasonable performance with PV between 0.16% and 0.65% larger than those of OP.

Table 9 reports the CEQ value of switching from DCC to DCW. While no negative

CEQ is statistically significant, with respect to QML estimation, the investor is willing

to pay between 0.40 and 0.47 daily bps, statistically significant, to switch from DCC

to DCW. Average daily turnover TO is reported in Table 12 and ranges between 1.21

and 1.72, slightly lower than that of DCC and DCIC.

BETC of Table 15 show that DCW is always preferred to DCC due to generally

equal PV but lower TO. In fact, even for investors with risk aversion γ = 10, break-

even transaction costs would be lower than 1 bps.

It must be emphasized that the DCW Diagonal LS of panel 2 in Table 5 is genuinely

estimated equation-by-equation. Despite the fact that this data-set is best described

by a scalar specification (cf. the relative performances of Diagonal and Scalar in Tables
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3 and 4) the element-by-element modeling of the weights exhibits PV reductions

of 44.01% when compared to Naive and 33.28% when compared to the best VT.

PV is 0.83% and 0.54% larger than that of the best DCC and DCIC specifications,

respectively, although none of the differences is statistically significant. Hence, the

element-by-element DCW modeling is more than a valid alternative: it is as simple and

computationally convenient as VT, its portfolio allocation is substantially superior

to VT (while not statistically inferior to competing approaches like DCC). Most

importantly, it is easily scalable to large cross-sectional dimensions M for which other

approaches generally fail.

8.5 Overall Discussion

There is a variety of dimensions, of ingredients, so to speak, along which these re-

sults can be evaluated: the models to forecast the conditional variances, those for the

conditional correlations, the use of an objective function for estimation and portfolio

performance. In fact, while single models may perform better separately, it is also

important to assess the way that these ingredients are assembled together in view

of the ultimate goal of optimal portfolio allocation (which we evaluate with separate

performance measures). In the background, we need to consider computational as-

pects as well, given the necessary attention to be paid to tractability relative to the

dimensionality at hand.

Within the group of conditional variance models considered, we find that LnGarch

LS produces forecasts that are superior to those of the competing specifications, at

any significance level. Similarly, among the DCC specifications considered, we find

that the Scalar DCC LS produces the best conditional correlation forecasts.

The objective function chosen for estimation turns out to be relevant for the fore-

cast performance. When it is QML-estimated, the DCIC is not only computationally

more convenient than DCC, but it gives superior forecasts in terms of PV, CEQ and

in many cases BETC. By contrast, when based on LS estimation, our DCIC would

never be preferred to DCC.

From the point of view of portfolio performance, the proposed DCW, as compu-

tationally convenient as a simple volatility timing strategy VT, produces forecasts

that are never statistically inferior to DCC in terms of Portfolio Variance (PV) and

Certainty Equivalent Return (CEQ). Thanks to its generally lower turnover TO, in

the presence of transaction costs, DCW is always preferred to DCC. Even for investors

with risk-aversion of γ = 10, break-even transaction costs BETC would be lower than
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1 bps. Both Scalar- and Diagonal-DCW are very easily scalable to large cross-sectional

dimensions for which other approaches generally fail.

As a possible reading key, we can see how these forecasts behave in practice. We

organize one–step ahead results for the Dynamic Conditional Weights (DCW) model

by individual stock by first taking their absolute value and then rescaling them to

sum up to one. The outcome is aggregated by ticker in the same sector (cf. Table 1)

and is then ordered according to the average importance over the period considered.

The graphical representation of the cumulative relative importance of sectors (value)

is influenced by the corresponding cardinality (i.e. value = average×# of tickers);

each sector position is readable as the difference from the lower line (the top line

being 1).

Over the entire period 2010–2015 (Figure 1), the relative importance of Services

is fairly stable around 0.23 (= 0.057× 4); the next sector is Consumer Goods whose

importance oscillates around 0.20 = (0.05× 4), although it shows a higher variability

and a temporary diminished importance during 2013; Healthcare is next 0.15 =

(0.038 × 4) and it shows a diminishing importance with a drastic reduction of its

values right after the beginning of 2013. Technology has an average importance of

0.16 = (0.031×5) with a fairly stable value over the whole period; Basic Materials has

an average of 0.026 which over 3 tickers adds a relative importance of 0.08; Industrial

Goods has an overall value 0.12 as the product between an average of 0.024 times

5 tickers: its relative importance seems to increase after the beginning of 2013 for

about one year, and then, again, during the first half of 2015. Finally, Financials has

a relative importance of 0.06 = (0.021× 3).

Breaking the results by year, we get a more detailed view of the evolution of this

relative importance: first and foremost the confirmation that Services and Consumer

Goods alternate in the top position (four, respectively, two times). Financial is al-

ways in the weakest position (with a substantial gain in 2015); Health Care is fairly

prominent in the first four years (reaching the second ranking in 2013), but it rapidly

deteriorates in 2014 and even more so in 2015. Technology jumps to the third position

in 2014 and 2015.

9 Conclusions

In this paper we have focused on the role that modeling conditional second mo-

ments has on optimal portfolio allocation. From the empirical application on a panel
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of M = 28 stocks, when conditional variances are modeled and their forecasts incor-

porated in a volatility timing (VT) strategy, we find substantial improvements upon

the simple Naive allocation. We do find further striking improvements upon both the

Naive and VT strategies from the additional consideration of conditional correlation

forecasts modeled by either the DCC, or by our Dynamic Conditional Inverse Corre-

lation (DCIC) and Dynamic Conditional Weights (DCW) approaches. The conclusion

we draw is that using high-frequency data and suitably modeling conditional second

moments has financial relevance in portfolio optimization problems. Furthermore,

while both DCW and SCC bypass the curse of dimensionality, in optimal portfolio

applications the former is computationally more convenient as its modeling dimension

is linear in the cross-section, while the latter, and all conditional correlation models,

have modeling dimensions that are quadratic in the cross-section.

Some extensions are in view, but they are not pursued here: estimation refine-

ments, internalizing transaction costs, and heterogeneity. We found that the relative

performance of DCIC depends on the way it is estimated; this has a bearing on com-

putational complexity behind estimation. In that respect, the superior performance

of DCIC under the QML objective function suggests that some improvements may be

obtained within the computationally simpler LS approach; the challenge there is to

search for a more suitable function to apply to the observable and predicted values

before the sum of their squared differences is minimized.

We have shown that considering transaction costs alters the outlook in the per-

formance of the methods: a promising extension would be to include these costs

explicitly in the investor’s objective function to see how they have a bearing on the

various approaches presented here.

A more diversified panel in terms of assets’ size and liquidity may provide ad-

ditional insights in how heterogeneity impacts on the performance of the proposed

DCIC and DCW.
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Pástor, Ľ. and R.F. Stambaugh (2000), “Comparing Asset Pricing Models: An

Investment Perspective”, Journal of Financial Economics 56, 335-381.
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A Appendix

A.1 Data Handling

For each trading day t, let {xj}Jj=1 be the collection of the (M × 1) return-vectors

resulting from price-vectors synchronized according to Barndorff-Nielsen et al. (2011).

Furthermore, let {x̃j}J̃j=1 be the collection of return-vectors in the j-th bin of equally

spaced 15 minute intervals. The daily realized kernel variance-covariance matrix is

then computed as:

Ω̂ =
l∑

h=−l

k

(
h

H

)
Γh

where Γh is:

Γh =



J∑
j=h+1

xjx
′
j−h if h ≥ 0

J∑
j=−h+1

xj+hx
′
j if h < 0

k(x) is the Parzen kernel:

k(x) =


1− 6x2 + 6x3 if x ∈ [0, 1/2]

2(1− x)3 if x ∈ (1/2, 1]

0 otherwise

and H is given by:

H =
1

M

M∑
i=1

3.51 · J3/5

(2J)−1
∑J

j=1 x
2
i,j∑J̃

j=1 x̃
2
i,j

2/5

where xi,j and x̃i,j are the i-th elements of the vectors xj and x̃j, respectively, and

l = min(H, J − 1).

A.2 Gaussian Likelihood

Let {εn,t}Nn=1 be the (M ×1) vectors of equally spaced, mean zero and serially un-

correlated intra-daily observations and Ω̂t =
∑N

n=1 εn,tε
′
n,t the corresponding realized

variance-covariance matrix. For simplicity, treat the intra-daily variance-covariance
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matrices as constant within each day: V[εn,t] = N−1 · Ωt and V
[∑N

n=1 εn,t

]
= Ωt.

The concentrated Gaussian log-likelihood for observation εn,t is:

ln,t = − ln
∣∣N−1 · Ωt

∣∣−N · ε′n,tΩ−1
t εn,t

= M ln(N)− ln |Ωt| −N · ε′n,tΩ−1
t εn,t

Dropping the constant term on the right-hand-side, the concentrated log-likelihood

for the observations of day t is given by:

lt = −
N∑
n=1

ln |Ωt| −N
N∑
n=1

ε′n,tΩ
−1
t εn,t

= −N · ln |Ωt| −N · TR
(

Ω−1
t Ω̂t

)
Dropping the proportionality factor N , the concentrated log-likelihood for the sample

of size T is then given by:

l = −
T∑
t=1

[
ln |Ωt|+ TR

(
Ω−1
t Ω̂t

)]
(15)

The concentrated log-likelihood for the estimation of the conditional models of Sec-

tions 3.2 and 3.3 is obtained from equation (15) by replacing the conditional and

realized variance-covariance matrices with the conditional and realized correlation

matrices, respectively:

l = −
T∑
t=1

[
ln |Rt|+ TR

(
R−1
t R̂t

)]
Setting M = 1 yields the univariate Gaussian log-likelihood used to estimate the

conditional variance models of Section 3.1. While, setting M = 2 yields the bivariate

Gaussian log-likelihood used to estimate the element-by-element specifications of the

conditional inverse correlations of Section 3.3.

A.3 Transaction Costs Approximation

Recall equation (13) and let R be the daily weighted average return over the entire

time series and across all assets:

R ≡
1

T ·M
∑T

t=1

∑M
j=1 |ωκ,j,t| ·R oc

j,t

1
T ·M

∑T
t=1

∑M
j=1 |ωκ,j,t|
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Then:

τ · 1

T

T∑
t=1

M∑
j=1

R oc
j,t |ωκ,j,t| = τR · 1

T

T∑
t=1

M∑
j=1

|ωκ,j,t|

= τR · TOκ

from which it follows that the average transaction cost associated with model κ is

given by:

TCκ = 2τ · TOκ + τR · TOκ

≈ 2τ · TOκ

given that R is usually a very small number.
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Table 1: List of tickers in our sample by sector.

Company Symbol Sector

Chevron CVX Basic Materials

DowDuPont DWDP Basic Materials

ExxonMobil XOM Basic Materials

Apple AAPL Consumer Goods

Coca-Cola KO Consumer Goods

Nike NKE Consumer Goods

Procter & Gamble PG Consumer Goods

American Express AXP Financial

Goldman Sachs GS Financial

JPMorgan Chase JPM Financial

Travelers TRV Financial

Visa V Financial

Johnson & Johnson JNJ Healthcare

Merck MRK Healthcare

Pfizer PFE Healthcare

UnitedHealth Group UNH Healthcare

3M MMM Industrial Goods

Boeing BA Industrial Goods

Caterpillar CAT Industrial Goods

General Electric GE Industrial Goods

United Technologies UTX Industrial Goods

McDonald’s MCD Services

The Home Depot HD Services

Walmart WMT Services

Walt Disney DIS Services

Cisco Systems CSCO Technology

IBM IBM Technology

Intel INTC Technology

Microsoft MSFT Technology

Verizon VZ Technology
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Table 2:

Average out-of-sample daily variances PV of the Naive portfolio strategy and of the VT strategy for all variance and
objective function specifications considered. The symbols ∗, ∗∗ and ∗∗∗ indicate that the VT variance is significantly
smaller than the Naive variance at the 10%, 5% and 1% level, respectively.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Naive 0.765768 0.940376 0.337162 0.247769 0.265182 0.477073 0.505796

VT

Garch LS 0.628512∗∗∗ 0.774085∗∗∗ 0.276035∗∗∗ 0.226469∗∗∗ 0.237077∗∗∗ 0.442673∗∗∗ 0.431006∗∗∗

Garch QML 0.619003∗∗∗ 0.765655∗∗∗ 0.267558∗∗∗ 0.226375∗∗∗ 0.239009∗∗∗ 0.440675∗∗∗ 0.426580∗∗∗

LnGarch LS 0.616889∗∗∗ 0.755255∗∗∗ 0.264938∗∗∗ 0.226838∗∗∗ 0.239349∗∗∗ 0.443525∗∗∗ 0.424664∗∗∗

LnGarch QML 0.615938∗∗∗ 0.762678∗∗∗ 0.264855∗∗∗ 0.226517∗∗∗ 0.238980∗∗∗ 0.441084∗∗∗ 0.425210∗∗∗

InvGarch LS 0.628599∗∗∗ 0.761852∗∗∗ 0.264861∗∗∗ 0.227169∗∗∗ 0.239974∗∗∗ 0.442630∗∗∗ 0.427720∗∗∗

InvGarch QML 0.614299∗∗∗ 0.759060∗∗∗ 0.265133∗∗∗ 0.226861∗∗∗ 0.239441∗∗∗ 0.440931∗∗∗ 0.424487∗∗∗

Har LS 0.629024∗∗∗ 0.776975∗∗∗ 0.277726∗∗∗ 0.228755∗∗∗ 0.242804∗∗∗ 0.443216∗∗∗ 0.433283∗∗∗

Har QML 0.619207∗∗∗ 0.766770∗∗∗ 0.266976∗∗∗ 0.226444∗∗∗ 0.239520∗∗∗ 0.441176∗∗∗ 0.426884∗∗∗
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Table 3:

Average out-of-sample daily variances PV of the of the minimum variance portfolio constructed from the forecasts of
the various variance, DCC and objective function specifications considered. The symbols ∗, ∗∗ and ∗∗∗ indicate that
the DCC portfolio variance is significantly smaller than the VT variance at the 10%, 5% and 1% level, respectively.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCC LS

Garch LS 0.367726∗∗∗ 0.424391∗∗∗ 0.198676∗∗∗ 0.210328∗∗∗ 0.211125∗∗∗ 0.387286∗∗∗ 0.299998∗∗∗

Garch QML 0.356986∗∗∗ 0.408238∗∗∗ 0.189633∗∗∗ 0.206708∗∗∗ 0.196900∗∗∗ 0.361714∗∗∗ 0.286776∗∗∗

LnGarch LS 0.351059∗∗∗ 0.396345∗∗∗ 0.187109∗∗∗ 0.204369∗∗∗ 0.193208∗∗∗ 0.352605∗∗∗ 0.280859∗∗∗

LnGarch QML 0.353260∗∗∗ 0.408446∗∗∗ 0.190171∗∗∗ 0.207688∗∗∗ 0.196711∗∗∗ 0.359867∗∗∗ 0.286102∗∗∗

InvGarch LS 0.364467∗∗∗ 0.403361∗∗∗ 0.186760∗∗∗ 0.204402∗∗∗ 0.193623∗∗∗ 0.353503∗∗∗ 0.284436∗∗∗

InvGarch QML 0.355923∗∗∗ 0.411099∗∗∗ 0.192500∗∗∗ 0.209378∗∗∗ 0.197347∗∗∗ 0.355478∗∗∗ 0.287034∗∗∗

Har LS 0.363172∗∗∗ 0.424437∗∗∗ 0.199700∗∗∗ 0.211095∗∗∗ 0.206934∗∗∗ 0.376261∗∗∗ 0.297010∗∗∗

Har QML 0.357097∗∗∗ 0.407351∗∗∗ 0.189949∗∗∗ 0.206387∗∗∗ 0.197345∗∗∗ 0.358907∗∗∗ 0.286252∗∗∗

Scalar DCC QML

Garch LS 0.369713∗∗∗ 0.430140∗∗∗ 0.197520∗∗∗ 0.209104∗∗∗ 0.210215∗∗∗ 0.392734∗∗∗ 0.301649∗∗∗

Garch QML 0.361195∗∗∗ 0.419130∗∗∗ 0.190367∗∗∗ 0.208174∗∗∗ 0.199696∗∗∗ 0.370714∗∗∗ 0.291628∗∗∗

LnGarch LS 0.355591∗∗∗ 0.405796∗∗∗ 0.187755∗∗∗ 0.206080∗∗∗ 0.196058∗∗∗ 0.366492∗∗∗ 0.286373∗∗∗

LnGarch QML 0.357455∗∗∗ 0.418440∗∗∗ 0.190963∗∗∗ 0.209275∗∗∗ 0.199498∗∗∗ 0.368356∗∗∗ 0.290745∗∗∗

InvGarch LS 0.366162∗∗∗ 0.409325∗∗∗ 0.186467∗∗∗ 0.204737∗∗∗ 0.194685∗∗∗ 0.361826∗∗∗ 0.287284∗∗∗

InvGarch QML 0.359737∗∗∗ 0.420007∗∗∗ 0.193227∗∗∗ 0.210723∗∗∗ 0.200018∗∗∗ 0.364975∗∗∗ 0.291529∗∗∗

Har LS 0.365841∗∗∗ 0.430374∗∗∗ 0.198447∗∗∗ 0.209929∗∗∗ 0.208272∗∗∗ 0.383793∗∗∗ 0.299521∗∗∗

Har QML 0.360978∗∗∗ 0.418014∗∗∗ 0.190383∗∗∗ 0.207583∗∗∗ 0.199321∗∗∗ 0.368409∗∗∗ 0.290863∗∗∗

Diagonal DCC LS

Garch LS 0.366709∗∗∗ 0.424081∗∗∗ 0.198612∗∗∗ 0.210201∗∗∗ 0.210528∗∗∗ 0.386141∗∗∗ 0.299455∗∗∗

Garch QML 0.356260∗∗∗ 0.409239∗∗∗ 0.189812∗∗∗ 0.206860∗∗∗ 0.196998∗∗∗ 0.360994∗∗∗ 0.286773∗∗∗

LnGarch LS 0.350539∗∗∗ 0.397453∗∗∗ 0.187307∗∗∗ 0.204612∗∗∗ 0.193251∗∗∗ 0.352424∗∗∗ 0.281008∗∗∗

LnGarch QML 0.352617∗∗∗ 0.409244∗∗∗ 0.190419∗∗∗ 0.207867∗∗∗ 0.196745∗∗∗ 0.359074∗∗∗ 0.286072∗∗∗

InvGarch LS 0.362809∗∗∗ 0.403303∗∗∗ 0.186803∗∗∗ 0.204624∗∗∗ 0.193428∗∗∗ 0.352862∗∗∗ 0.284055∗∗∗

InvGarch QML 0.355254∗∗∗ 0.411918∗∗∗ 0.192782∗∗∗ 0.209568∗∗∗ 0.197405∗∗∗ 0.355292∗∗∗ 0.287116∗∗∗

Har LS 0.362485∗∗∗ 0.424110∗∗∗ 0.199625∗∗∗ 0.210947∗∗∗ 0.206844∗∗∗ 0.375209∗∗∗ 0.296613∗∗∗

Har QML 0.356481∗∗∗ 0.408366∗∗∗ 0.190116∗∗∗ 0.206549∗∗∗ 0.197428∗∗∗ 0.358295∗∗∗ 0.286285∗∗∗

Diagonal DCC QML

Garch LS 0.369272∗∗∗ 0.431524∗∗∗ 0.197746∗∗∗ 0.209065∗∗∗ 0.209952∗∗∗ 0.393292∗∗∗ 0.301886∗∗∗

Garch QML 0.361138∗∗∗ 0.421059∗∗∗ 0.190733∗∗∗ 0.208301∗∗∗ 0.199872∗∗∗ 0.371970∗∗∗ 0.292260∗∗∗

LnGarch LS 0.355664∗∗∗ 0.407720∗∗∗ 0.188139∗∗∗ 0.206287∗∗∗ 0.196240∗∗∗ 0.368228∗∗∗ 0.287124∗∗∗

LnGarch QML 0.357446∗∗∗ 0.420212∗∗∗ 0.191359∗∗∗ 0.209426∗∗∗ 0.199647∗∗∗ 0.369680∗∗∗ 0.291376∗∗∗

InvGarch LS 0.365886∗∗∗ 0.410400∗∗∗ 0.186781∗∗∗ 0.204979∗∗∗ 0.194751∗∗∗ 0.363295∗∗∗ 0.287766∗∗∗

InvGarch QML 0.359662∗∗∗ 0.421682∗∗∗ 0.193613∗∗∗ 0.210865∗∗∗ 0.200168∗∗∗ 0.366557∗∗∗ 0.292172∗∗∗

Har LS 0.365420∗∗∗ 0.431559∗∗∗ 0.198703∗∗∗ 0.209950∗∗∗ 0.208300∗∗∗ 0.384579∗∗∗ 0.299830∗∗∗

Har QML 0.360869∗∗∗ 0.419999∗∗∗ 0.190753∗∗∗ 0.207740∗∗∗ 0.199563∗∗∗ 0.369793∗∗∗ 0.291534∗∗∗
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Table 4:

Average out-of-sample daily variances PV of the of the minimum variance portfolio constructed from the forecasts
of the various variance, DCIC and objective function specifications considered. The symbols ∗, ∗∗ and ∗∗∗ indicate
that the DCIC portfolio variance is significantly smaller than the DCC variance at the 10%, 5% and 1% level,
respectively. Additionally, ∗, ∗∗ and ∗∗∗ indicate that the DCIC portfolio variance is significantly larger than the
DCC portfolio variance at the 10%, 5% and 1% level, respectively.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCIC LS

Garch LS 0.366000 0.425904 0.198542 0.209660 0.209315∗∗∗ 0.392444∗∗∗ 0.300385

Garch QML 0.357886 0.410823∗∗∗ 0.189402 0.205578∗∗ 0.197326 0.366907∗∗∗ 0.288065∗∗∗

LnGarch LS 0.351207 0.397673 0.186750 0.203383∗∗ 0.193665 0.356859∗∗∗ 0.281665

LnGarch QML 0.353524 0.410810∗∗ 0.189625 0.206423∗∗∗ 0.1196752 0.364830∗∗∗ 0.287071∗

InvGarch LS 0.362837 0.405922∗∗∗ 0.186490 0.203431∗∗ 0.193684 0.356799∗∗∗ 0.284943

InvGarch QML 0.355967 0.413273∗∗ 0.191836∗ 0.208107∗∗∗ 0.197199 0.359600∗∗∗ 0.287743

Har LS 0.361954 0.425950 0.199337 0.210425 0.206765 0.381940∗∗∗ 0.297803

Har QML 0.357785 0.410086∗∗∗ 0.189640 0.205234∗∗∗ 0.197920 0.364073∗∗∗ 0.287535∗∗

Scalar DCIC QML

Garch LS 0.367989 0.428706 0.197146 0.207095∗∗∗ 0.206635∗∗∗ 0.394148 0.300361∗∗∗

Garch QML 0.361513 0.417596 0.189379∗∗ 0.204439∗∗∗ 0.197602∗∗∗ 0.370765 0.290296∗∗∗

LnGarch LS 0.355462 0.403520 0.186721∗∗∗ 0.202363∗∗∗ 0.193981∗∗∗ 0.365098 0.284600∗∗∗

LnGarch QML 0.357409 0.416650 0.189551∗∗∗ 0.205257∗∗∗ 0.196872∗∗∗ 0.368228 0.289074∗∗∗

InvGarch LS 0.364886 0.408962 0.185898 0.201489∗∗∗ 0.192851∗∗∗ 0.361269 0.285975∗∗∗

InvGarch QML 0.359543 0.418143 0.191665∗∗∗ 0.206692∗∗∗ 0.197210∗∗∗ 0.364241 0.289662∗∗∗

Har LS 0.365009 0.428978 0.197839 0.207710∗∗∗ 0.205756∗∗∗ 0.385038 0.298464∗∗∗

Har QML 0.361451 0.416617 0.189320∗∗∗ 0.203873∗∗∗ 0.197604∗∗∗ 0.368613 0.289660∗∗∗

Diagonal DCIC LS

Garch LS 0.366905 0.425841 0.198188 0.209374∗ 0.208881∗∗∗ 0.392706∗∗∗ 0.300390∗

Garch QML 0.358719∗∗∗ 0.411046 0.189136 0.205444∗∗∗ 0.197280 0.367210∗∗∗ 0.288218∗∗∗

LnGarch LS 0.351915∗ 0.397709 0.186495∗∗ 0.203269∗∗∗ 0.193693 0.357760∗∗∗ 0.281883∗

LnGarch QML 0.354217∗∗∗ 0.411020 0.189356∗∗∗ 0.206331∗∗∗ 0.196700 0.365084∗∗∗ 0.287196∗∗

InvGarch LS 0.363445 0.405876∗∗ 0.186149∗ 0.203256∗∗∗ 0.193548 0.357240∗∗∗ 0.285002∗∗

InvGarch QML 0.356416 0.413493 0.191575∗∗∗ 0.208019∗∗∗ 0.197168 0.360232∗∗∗ 0.287897∗

Har LS 0.362402 0.425743 0.198966∗ 0.210109∗ 0.206761 0.382384∗∗∗ 0.297802∗∗

Har QML 0.358035 0.410222 0.189361∗ 0.205084∗∗∗ 0.197864 0.364602∗∗∗ 0.287607∗∗∗

Diagonal DCIC QML

Garch LS 0.368192 0.428712∗ 0.197098 0.206989∗∗∗ 0.206437∗∗∗ 0.394091 0.300328∗∗∗

Garch QML 0.361709 0.417849∗ 0.189357∗∗∗ 0.204332∗∗∗ 0.197508∗∗∗ 0.370800 0.290340∗∗∗

LnGarch LS 0.355667 0.403751∗∗ 0.186794∗∗∗ 0.202273∗∗∗ 0.193919∗∗∗ 0.365201∗∗ 0.284662∗∗∗

LnGarch QML 0.357603 0.416884∗ 0.189527∗∗∗ 0.205151∗∗∗ 0.196782∗∗∗ 0.368268 0.289115∗∗∗

InvGarch LS 0.363445 0.405876 0.186149 0.203256∗∗ 0.193548 0.357240∗∗∗ 0.285002∗∗∗

InvGarch QML 0.356416∗∗∗ 0.413493∗∗ 0.191575∗∗∗ 0.208019∗∗∗ 0.197168∗∗∗ 0.360232∗∗∗ 0.287897∗∗∗

Har LS 0.362402∗∗ 0.425743 0.198966 0.210109 0.206761 0.382384 0.297802∗∗∗

Har QML 0.361559 0.416865 0.189295∗∗∗ 0.203767∗∗∗ 0.197508∗∗∗ 0.368662 0.289690∗∗∗
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Table 5:

Average out-of-sample daily variances PV of the of the minimum variance portfolio constructed from the direct
modeling and forecasting of the portfolio weights DCW. Each specification has been estimated by minimizing the
in-sample-portfolio variance (OP), by least-squares (LS) and by quasi maximum likelihood (QML). The symbols
∗, ∗∗ and ∗∗∗ indicate that the DCW portfolio variance is significantly smaller than the DCC variance at the 10%,
5% and 1% level, respectively. Additionally, ∗, ∗∗ and ∗∗∗ indicate that the DCW portfolio variance is significantly
larger than the DCC portfolio variance at the 10%, 5% and 1% level, respectively. When possible, comparisons are
conducted with the best corresponding DCC specification. First and Third Panels: comparisons with Scalar DCC §
+ LnGarch §. Second Panel: comparisons with Diagonal DCC § + LnGarch §. In all panels, § is LS for OP and LS
and is QML otherwise.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCW

OP 0.357367 0.395033 0.183606∗∗∗ 0.201635∗∗ 0.190428∗∗∗ 0.350648 0.279867

LS 0.364858∗∗ 0.400907∗∗ 0.181594∗∗∗ 0.199397∗∗∗ 0.190334∗∗∗ 0.352549 0.281692

QML 0.365464 0.401505∗∗∗ 0.181564∗∗∗ 0.199455∗∗∗ 0.190378∗∗∗ 0.352731∗∗∗ 0.281935∗∗∗

Diagonal DCW

OP 0.365437 0.396500 0.182956∗∗∗ 0.201835∗∗ 0.191241∗∗ 0.357957∗∗∗ 0.282737

LS 0.368602∗∗∗ 0.404762∗∗ 0.180981∗∗∗ 0.200283∗∗∗ 0.190229∗∗∗ 0.353792 0.283197

QML 0.369197 0.405055∗∗∗ 0.180980∗∗∗ 0.200317∗∗∗ 0.190279∗∗∗ 0.353985∗∗∗ 0.283391∗∗

Scalar DCW (2, 1)

OP 0.358137 0.393704 0.183129∗∗∗ 0.200998∗∗∗ 0.189962∗∗∗ 0.351198 0.279602

LS 0.365179 0.399066 0.181174∗∗∗ 0.198588∗∗∗ 0.189743∗∗∗ 0.353046 0.281217

QML 0.365736 0.399615∗∗∗ 0.181147∗∗∗ 0.198633∗∗∗ 0.189789∗∗∗ 0.353210∗∗∗ 0.281440∗∗∗

Table 6:

Average out-of-sample daily certainty equivalent CEQ, expressed in basis points, of the VT strategy with respect
to the Naive portfolio strategy. CEQ are calculated for a risk-aversion coefficient of γ = 1 and may be computed
for different values of γ by simple multiplication. The symbols ∗, ∗∗ and ∗∗∗ indicate significance at the 10%, 5%
and 1% level, respectively.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

VT

Garch LS 6.86∗∗∗ 8.31∗∗∗ 3.06∗∗∗ 1.07∗∗∗ 1.41∗∗∗ 1.72∗∗∗ 3.74∗∗∗

Garch QML 7.34∗∗∗ 8.74∗∗∗ 3.48∗∗∗ 1.07∗∗∗ 1.31∗∗∗ 1.82∗∗∗ 3.96∗∗∗

LnGarch LS 7.44∗∗∗ 9.26∗∗∗ 3.61∗∗∗ 1.05∗∗∗ 1.29∗∗∗ 1.68∗∗∗ 4.06∗∗∗

LnGarch QML 7.49∗∗∗ 8.88∗∗∗ 3.62∗∗∗ 1.06∗∗∗ 1.31∗∗∗ 1.80∗∗∗ 4.03∗∗∗

InvGarch LS 6.86∗∗∗ 8.93∗∗∗ 3.62∗∗∗ 1.03∗∗∗ 1.26∗∗∗ 1.72∗∗∗ 3.90∗∗∗

InvGarch QML 7.57∗∗∗ 9.07∗∗∗ 3.60∗∗∗ 1.05∗∗∗ 1.29∗∗∗ 1.81∗∗∗ 4.07∗∗∗

Har LS 6.84∗∗∗ 8.17∗∗∗ 2.97∗∗∗ 0.95∗∗∗ 1.12∗∗∗ 1.69∗∗∗ 3.63∗∗∗

Har QML 7.33∗∗∗ 8.68∗∗∗ 3.51∗∗∗ 1.07∗∗∗ 1.28∗∗∗ 1.79∗∗∗ 3.95∗∗∗
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Table 7:

Average out-of-sample daily certainty equivalent CEQ, expressed in basis points, of the DCC minimum variance
portfolio with respect to the VT strategy. CEQ are calculated for a risk-aversion coefficient of γ = 1 and may be
computed for different values of γ by simple multiplication. The symbols ∗, ∗∗ and ∗∗∗ indicate significance at the
10%, 5% and 1% level, respectively.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCC LS

Garch LS 13.04∗∗∗ 17.48∗∗∗ 3.87∗∗∗ 0.81∗∗∗ 1.30∗∗∗ 2.77∗∗∗ 6.55∗∗∗

Garch QML 13.10∗∗∗ 17.87∗∗∗ 3.90∗∗∗ 0.98∗∗∗ 2.11∗∗∗ 3.95∗∗∗ 6.99∗∗∗

LnGarch LS 13.29∗∗∗ 17.95∗∗∗ 3.89∗∗∗ 1.12∗∗∗ 2.31∗∗∗ 4.55∗∗∗ 7.19∗∗∗

LnGarch QML 13.13∗∗∗ 17.71∗∗∗ 3.73∗∗∗ 0.94∗∗∗ 2.11∗∗∗ 4.06∗∗∗ 6.96∗∗∗

InvGarch LS 13.21∗∗∗ 17.92∗∗∗ 3.91∗∗∗ 1.14∗∗∗ 2.32∗∗∗ 4.46∗∗∗ 7.16∗∗∗

InvGarch QML 12.92∗∗∗ 17.40∗∗∗ 3.63∗∗∗ 0.87∗∗∗ 2.10∗∗∗ 4.27∗∗∗ 6.87∗∗∗

Har LS 13.29∗∗∗ 17.63∗∗∗ 3.90∗∗∗ 0.88∗∗∗ 1.79∗∗∗ 3.35∗∗∗ 6.81∗∗∗

Har QML 13.11∗∗∗ 17.97∗∗∗ 3.85∗∗∗ 1.00∗∗∗ 2.11∗∗∗ 4.11∗∗∗ 7.03∗∗∗

Scalar DCC QML

Garch LS 12.94∗∗∗ 17.20∗∗∗ 3.93∗∗∗ 0.87∗∗∗ 1.34∗∗∗ 2.50∗∗∗ 6.47∗∗∗

Garch QML 12.89∗∗∗ 17.33∗∗∗ 3.86∗∗∗ 0.91∗∗∗ 1.97∗∗∗ 3.50∗∗∗ 6.75∗∗∗

LnGarch LS 13.06∗∗∗ 17.47∗∗∗ 3.86∗∗∗ 1.04∗∗∗ 2.16∗∗∗ 3.85∗∗∗ 6.91∗∗∗

LnGarch QML 12.92∗∗∗ 17.21∗∗∗ 3.69∗∗∗ 0.86∗∗∗ 1.97∗∗∗ 3.64∗∗∗ 6.72∗∗∗

InvGarch LS 13.12∗∗∗ 17.63∗∗∗ 3.92∗∗∗ 1.12∗∗∗ 2.26∗∗∗ 4.04∗∗∗ 7.02∗∗∗

InvGarch QML 12.73∗∗∗ 16.95∗∗∗ 3.60∗∗∗ 0.81∗∗∗ 1.97∗∗∗ 3.80∗∗∗ 6.65∗∗∗

Har LS 13.16∗∗∗ 17.33∗∗∗ 3.96∗∗∗ 0.94∗∗∗ 1.73∗∗∗ 2.97∗∗∗ 6.69∗∗∗

Har QML 12.91∗∗∗ 17.44∗∗∗ 3.83∗∗∗ 0.94∗∗∗ 2.01∗∗∗ 3.64∗∗∗ 6.80∗∗∗

Diagonal DCC LS

Garch LS 13.09∗∗∗ 17.50∗∗∗ 3.87∗∗∗ 0.81∗∗∗ 1.33∗∗∗ 2.83∗∗∗ 6.58∗∗∗

Garch QML 13.14∗∗∗ 17.82∗∗∗ 3.89∗∗∗ 0.98∗∗∗ 2.10∗∗∗ 3.98∗∗∗ 6.99∗∗∗

LnGarch LS 13.32∗∗∗ 17.89∗∗∗ 3.88∗∗∗ 1.11∗∗∗ 2.30∗∗∗ 4.56∗∗∗ 7.18∗∗∗

LnGarch QML 13.17∗∗∗ 17.67∗∗∗ 3.72∗∗∗ 0.93∗∗∗ 2.11∗∗∗ 4.10∗∗∗ 6.96∗∗∗

InvGarch LS 13.29∗∗∗ 17.93∗∗∗ 3.90∗∗∗ 1.13∗∗∗ 2.33∗∗∗ 4.49∗∗∗ 7.18∗∗∗

InvGarch QML 12.95∗∗∗ 17.36∗∗∗ 3.62∗∗∗ 0.86∗∗∗ 2.10∗∗∗ 4.28∗∗∗ 6.87∗∗∗

Har LS 13.33∗∗∗ 17.64∗∗∗ 3.91∗∗∗ 0.89∗∗∗ 1.80∗∗∗ 3.40∗∗∗ 6.83∗∗∗

Har QML 13.14∗∗∗ 17.92∗∗∗ 3.84∗∗∗ 0.99∗∗∗ 2.10∗∗∗ 4.14∗∗∗ 7.03∗∗∗

Diagonal DCC QML

Garch LS 12.96∗∗∗ 17.13∗∗∗ 3.91∗∗∗ 0.87∗∗∗ 1.36∗∗∗ 2.47∗∗∗ 6.46∗∗∗

Garch QML 12.89∗∗∗ 17.23∗∗∗ 3.84∗∗∗ 0.90∗∗∗ 1.96∗∗∗ 3.44∗∗∗ 6.72∗∗∗

LnGarch LS 13.06∗∗∗ 17.38∗∗∗ 3.84∗∗∗ 1.03∗∗∗ 2.16∗∗∗ 3.76∗∗∗ 6.88∗∗∗

LnGarch QML 12.92∗∗∗ 17.12∗∗∗ 3.67∗∗∗ 0.85∗∗∗ 1.97∗∗∗ 3.57∗∗∗ 6.69∗∗∗

InvGarch LS 13.14∗∗∗ 17.57∗∗∗ 3.90∗∗∗ 1.11∗∗∗ 2.26∗∗∗ 3.97∗∗∗ 7.00∗∗∗

InvGarch QML 12.73∗∗∗ 16.87∗∗∗ 3.58∗∗∗ 0.80∗∗∗ 1.96∗∗∗ 3.72∗∗∗ 6.62∗∗∗

Har LS 13.18∗∗∗ 17.27∗∗∗ 3.95∗∗∗ 0.94∗∗∗ 1.73∗∗∗ 2.93∗∗∗ 6.67∗∗∗

Har QML 12.92∗∗∗ 17.34∗∗∗ 3.81∗∗∗ 0.94∗∗∗ 2.00∗∗∗ 3.57∗∗∗ 6.77∗∗∗
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Table 8:

Average out-of-sample daily certainty equivalent CEQ, expressed in basis points, of the DCIC minimum variance
portfolio with respect to the DCC minimum variance portfolio. CEQ are calculated for a risk-aversion coefficient of
γ = 1 and may be computed for different values of γ by simple multiplication. The symbols ∗, ∗∗ and ∗∗∗ indicate
significance at the 10%, 5% and 1% level, respectively.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCIC LS

Garch LS 0.09 -0.08 0.01 0.03 0.09∗∗∗ -0.26∗∗∗ -0.02

Garch QML -0.04 -0.13∗∗∗ 0.01 0.06∗∗ -0.02 -0.26∗∗∗ -0.06∗∗∗

LnGarch LS -0.01 -0.07 0.02 0.05∗∗ -0.02 -0.21∗∗∗ -0.04

LnGarch QML -0.01 -0.12∗∗ 0.03 0.06∗∗∗ -0.00 -0.25∗∗∗ -0.05∗

InvGarch LS 0.08 -0.13∗∗∗ 0.01 0.05∗∗ -0.00 -0.16∗∗∗ -0.02

InvGarch QML -0.00 -0.11∗∗ 0.03∗ 0.06∗∗∗ 0.01 -0.21∗∗∗ -0.04

Har LS 0.06 -0.08 0.02 0.03 0.01 -0.28∗∗∗ -0.04

Har QML -0.03 -0.14∗∗∗ 0.02 0.06∗∗∗ -0.03 -0.25∗∗∗ -0.06∗∗

Scalar DCIC QML

Garch LS 0.09 0.07 0.02 0.10∗∗∗ 0.18∗∗∗ -0.07 0.06∗∗∗

Garch QML -0.02 0.08 0.05∗∗ 0.19∗∗∗ 0.10∗∗∗ -0.00 0.07∗∗∗

LnGarch LS 0.01 0.11 0.05∗∗∗ 0.19∗∗∗ 0.10∗∗∗ 0.07 0.09∗∗∗

LnGarch QML 0.00 0.09 0.07∗∗∗ 0.20∗∗∗ 0.13∗∗∗ 0.01 0.08∗∗∗

InvGarch LS 0.06 0.02 0.03 0.16∗∗∗ 0.09∗∗∗ 0.03 0.07∗∗∗

InvGarch QML 0.01 0.09 0.08∗∗∗ 0.20∗∗∗ 0.14∗∗∗ 0.04 0.09∗∗∗

Har LS 0.04 0.07 0.03 0.11∗∗∗ 0.13∗∗∗ -0.06 0.05∗∗∗

Har QML -0.02 0.07 0.05∗∗∗ 0.19∗∗∗ 0.09∗∗∗ -0.01 0.06∗∗∗

Diagonal DCIC LS

Garch LS -0.01 -0.09 0.02 0.04∗ 0.08∗∗∗ -0.33∗∗∗ -0.05∗

Garch QML -0.12∗∗∗ -0.09 0.03 0.07∗∗∗ -0.01 -0.31∗∗∗ -0.07∗∗∗

LnGarch LS -0.07∗ -0.01 0.04∗∗ 0.07∗∗∗ -0.02 -0.27∗∗∗ -0.04∗

LnGarch QML -0.08∗∗∗ -0.09 0.05∗∗∗ 0.07∗∗∗ 0.00 -0.30∗∗∗ -0.06∗

InvGarch LS -0.03 -0.13∗∗ 0.03∗ 0.07∗∗∗ -0.01 -0.22∗∗∗ -0.05∗∗

InvGarch QML -0.06 -0.08 0.06∗∗∗ 0.08∗∗∗ 0.01 -0.24∗∗∗ -0.04∗

Har LS 0.00 -0.08 0.03∗ 0.04∗ 0.00 -0.36∗∗∗ -0.06∗∗

Har QML -0.08 -0.09 0.04∗ 0.07∗∗∗ -0.02 -0.33∗∗∗ -0.07∗∗∗

Diagonal DCIC QML

Garch LS 0.05 0.14∗ 0.03 0.10∗∗∗ 0.18∗∗∗ -0.04 0.08∗∗∗

Garch QML -0.03 0.16∗ 0.07∗∗∗ 0.20∗∗∗ 0.12∗∗∗ 0.06 0.10∗∗∗

LnGarch LS -0.00 0.20∗ 0.07∗∗∗ 0.20∗∗∗ 0.12∗∗∗ 0.15∗∗ 0.12∗∗∗

LnGarch QML -0.01 0.17∗ 0.09∗∗∗ 0.21∗∗∗ 0.14∗∗∗ 0.07 0.11∗∗∗

InvGarch LS 0.12 0.23 0.03 0.09∗∗ 0.06 0.30∗∗∗ 0.14∗∗∗

InvGarch QML 0.16∗∗∗ 0.41∗∗ 0.10∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.32∗∗∗ 0.21∗∗∗

Har LS 0.15∗∗ 0.29 -0.01 -0.01 0.08 0.11 0.10∗∗∗

Har QML -0.03 0.16 0.07∗∗∗ 0.20∗∗∗ 0.10∗∗∗ 0.06 0.09∗∗∗
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Table 9:

Average out-of-sample daily certainty equivalent CEQ, expressed in basis points, of the DCW minimum variance
portfolio with respect to the DCC minimum variance portfolio. CEQ are calculated for a risk-aversion coefficient of
γ = 1 and may be computed for different values of γ by simple multiplication. The symbols ∗, ∗∗ and ∗∗∗ indicate
significance at the 10%, 5% and 1% level, respectively. When possible, comparisons are conducted with the best
corresponding DCC specification. First and Third Panels: comparisons with Scalar DCC § + LnGarch §. Second
Panel: comparisons with Diagonal DCC § + LnGarch §. In all panels, § is LS for OP and LS and is QML otherwise.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCW

OP -0.32 0.07 0.18∗∗∗ 0.14∗∗ 0.14∗∗∗ 0.10 0.05

LS -0.69∗∗ -0.23∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.14∗∗∗ 0.00 -0.04

QML -0.40 0.85∗∗∗ 0.47∗∗∗ 0.49∗∗∗ 0.46∗∗∗ 0.78∗∗∗ 0.44∗∗∗

Diagonal DCW

OP -0.74 0.05 0.22∗∗∗ 0.14∗∗ 0.10∗∗ -0.28∗∗∗ -0.09

LS -0.90∗∗∗ -0.37∗∗ 0.32∗∗∗ 0.22∗∗∗ 0.15∗∗∗ -0.07 -0.11

QML -0.59 0.76∗∗∗ 0.52∗∗∗ 0.46∗∗∗ 0.47∗∗∗ 0.78∗∗∗ 0.40∗∗

Scalar DCW (2, 1)

OP -0.35 0.13 0.20∗∗∗ 0.17∗∗∗ 0.16∗∗∗ 0.07 0.06

LS -0.71 -0.14 0.30∗∗∗ 0.29∗∗∗ 0.17∗∗∗ -0.02 -0.02

QML -0.41 0.94∗∗∗ 0.49∗∗∗ 0.53∗∗∗ 0.49∗∗∗ 0.76∗∗∗ 0.47∗∗∗
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Table 10:

Average daily out-of-sample daily turnover TO of the minimum variance portfolio constructed from the forecasts
of the various variance, DCC and objective function specifications considered.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCC LS

Garch LS 1.67∗∗∗ 1.73∗∗∗ 1.49∗∗∗ 1.44∗∗∗ 1.38∗∗∗ 1.69∗∗∗ 1.57∗∗∗

Garch QML 1.71 1.72 1.49 1.43 1.38 1.67 1.56

LnGarch LS 1.70 1.73 1.49 1.41 1.36 1.61 1.55

LnGarch QML 1.72 1.73 1.50 1.44 1.39 1.67 1.57

InvGarch LS 1.70 1.74 1.49 1.39 1.35 1.62 1.55

InvGarch QML 1.73 1.74 1.51 1.45 1.41 1.68 1.59

Har LS 1.68 1.74 1.49 1.43 1.47 1.69 1.59

Har QML 1.71 1.72 1.48 1.43 1.38 1.67 1.57

Scalar DCC QML

Garch LS 1.61 1.63 1.44 1.41 1.35 1.59 1.51

Garch QML 1.66 1.63 1.45 1.43 1.35 1.59 1.52

LnGarch LS 1.65 1.64 1.46 1.41 1.33 1.55 1.51

LnGarch QML 1.67 1.64 1.47 1.44 1.36 1.60 1.53

InvGarch LS 1.65 1.65 1.46 1.38 1.31 1.53 1.50

InvGarch QML 1.68 1.66 1.48 1.45 1.39 1.61 1.54

Har LS 1.62 1.64 1.44 1.40 1.43 1.60 1.52

Har QML 1.65 1.63 1.45 1.42 1.34 1.59 1.52

Diagonal DCC LS

Garch LS 1.67 1.73 1.49 1.44 1.39 1.69 1.57

Garch QML 1.71 1.72 1.49 1.43 1.39 1.66 1.57

LnGarch LS 1.70 1.72 1.49 1.41 1.36 1.61 1.55

LnGarch QML 1.72 1.72 1.50 1.44 1.40 1.67 1.57

InvGarch LS 1.70 1.74 1.49 1.40 1.35 1.61 1.55

InvGarch QML 1.73 1.74 1.51 1.45 1.42 1.68 1.59

Har LS 1.69 1.73 1.49 1.44 1.48 1.69 1.59

Har QML 1.71 1.72 1.49 1.44 1.39 1.67 1.57

Diagonal DCC QML

Garch LS 1.61 1.63 1.44 1.42 1.35 1.58 1.50

Garch QML 1.66 1.63 1.45 1.43 1.36 1.58 1.52

LnGarch LS 1.65 1.64 1.46 1.41 1.34 1.53 1.51

LnGarch QML 1.67 1.64 1.47 1.44 1.37 1.58 1.53

InvGarch LS 1.65 1.65 1.46 1.38 1.31 1.52 1.49

InvGarch QML 1.68 1.65 1.48 1.45 1.39 1.59 1.54

Har LS 1.62 1.63 1.44 1.41 1.43 1.58 1.52

Har QML 1.65 1.63 1.45 1.42 1.35 1.58 1.51

36



Table 11:

Average daily out-of-sample daily turnover TO of the minimum variance portfolio constructed from the forecasts
of the various variance, DCIC and objective function specifications considered.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCIC LS

Garch LS 1.72∗∗∗ 1.79∗∗∗ 1.48∗∗∗ 1.42∗∗∗ 1.38∗∗∗ 1.78∗∗∗ 1.60∗∗∗

Garch QML 1.75 1.77 1.48 1.41 1.38 1.76 1.59

LnGarch LS 1.75 1.77 1.48 1.39 1.36 1.71 1.58

LnGarch QML 1.76 1.78 1.48 1.41 1.38 1.76 1.60

InvGarch LS 1.75 1.79 1.48 1.37 1.35 1.71 1.58

InvGarch QML 1.77 1.78 1.50 1.43 1.40 1.77 1.61

Har LS 1.73 1.80 1.48 1.42 1.46 1.79 1.61

Har QML 1.75 1.78 1.47 1.41 1.38 1.77 1.59

Scalar DCIC QML

Garch LS 1.67 1.72 1.42 1.37 1.33 1.70 1.54

Garch QML 1.71 1.70 1.43 1.37 1.33 1.69 1.54

LnGarch LS 1.70 1.70 1.43 1.35 1.31 1.65 1.52

LnGarch QML 1.72 1.71 1.44 1.38 1.33 1.70 1.55

InvGarch LS 1.70 1.72 1.43 1.32 1.29 1.64 1.52

InvGarch QML 1.73 1.72 1.46 1.39 1.35 1.70 1.56

Har LS 1.68 1.72 1.42 1.36 1.40 1.71 1.55

Har QML 1.70 1.70 1.43 1.37 1.32 1.69 1.54

Diagonal DCIC LS

Garch LS 1.71 1.79 1.48 1.41 1.38 1.78 1.59

Garch QML 1.75 1.77 1.47 1.41 1.38 1.76 1.59

LnGarch LS 1.74 1.77 1.47 1.39 1.36 1.71 1.57

LnGarch QML 1.76 1.77 1.48 1.41 1.38 1.77 1.60

InvGarch LS 1.75 1.79 1.48 1.37 1.35 1.71 1.57

InvGarch QML 1.77 1.78 1.49 1.43 1.40 1.77 1.61

Har LS 1.73 1.79 1.48 1.42 1.46 1.79 1.61

Har QML 1.75 1.77 1.47 1.41 1.38 1.77 1.59

Diagonal DCIC QML

Garch LS 1.66 1.71 1.42 1.37 1.33 1.70 1.53

Garch QML 1.70 1.70 1.43 1.37 1.33 1.69 1.54

LnGarch LS 1.69 1.70 1.43 1.35 1.31 1.65 1.52

LnGarch QML 1.71 1.70 1.44 1.38 1.33 1.69 1.54

InvGarch LS 1.70 1.72 1.43 1.32 1.29 1.63 1.52

InvGarch QML 1.72 1.71 1.45 1.39 1.35 1.70 1.55

Har LS 1.68 1.71 1.42 1.36 1.40 1.71 1.55

Har QML 1.70 1.70 1.43 1.37 1.32 1.69 1.53
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Table 12:

Average daily out-of-sample daily turnover TO of the minimum variance portfolio constructed from the direct
modeling and forecasting of the portfolio weights DCW. Each specification was estimated by minimizing the
in-sample-portfolio variance (OP), by least-squares (LS) and by quasi maximum likelihood (QML).

ObjFun 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCW

OP 1.70∗∗∗ 1.72∗∗∗ 1.43∗∗∗ 1.34∗∗∗ 1.32∗∗∗ 1.66∗∗∗ 1.53∗∗∗

LS 1.54 1.57 1.35 1.26 1.24 1.50 1.41

QML 1.53 1.57 1.35 1.26 1.24 1.49 1.41

Diagonal DCW

OP 1.66 1.67 1.40 1.33 1.24 1.47 1.46

LS 1.49 1.55 1.34 1.27 1.21 1.42 1.38

QML 1.49 1.55 1.34 1.27 1.21 1.42 1.38

Scalar DCW (2, 1)

OP 1.71 1.72 1.43 1.34 1.32 1.66 1.53

LS 1.55 1.58 1.35 1.26 1.24 1.51 1.41

QML 1.54 1.57 1.35 1.25 1.24 1.50 1.41
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Table 13:

Average out-of-sample daily break-even transaction costs BETC, expressed in basis points, of the DCC minimum
variance portfolio with respect to the VT minimum variance portfolio. BETC are calculated for a risk-aversion
coefficient of γ = 1 and may be computed for different values of γ by simple multiplication. < and > define the
range of transaction costs for which DCC is preferred to VT.

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCC LS

Garch LS <9.73∗∗∗ <11.95∗∗∗ <3.94∗∗∗ <0.92∗∗∗ <1.69∗∗∗ <2.01∗∗∗ <5.78∗∗∗

Garch QML <9.29 <12.39 <4.01 <1.15 <2.77 <2.96 <6.19

LnGarch LS <9.46 <12.37 <3.95 <1.38 <3.22 <3.71 <6.54

LnGarch QML <9.43 <12.62 <3.94 <1.36 <3.20 <3.61 <6.56

InvGarch LS <9.38 <12.04 <3.95 <1.45 <3.33 <3.60 <6.51

InvGarch QML <8.86 <11.79 <3.55 <0.97 <2.56 <3.13 <5.85

Har LS <9.72 <11.94 <3.96 <1.02 <1.89 <2.41 <5.81

Har QML <9.26 <12.44 <3.97 <1.16 <2.77 <3.06 <6.21

Scalar DCC QML

Garch LS <10.62 <13.63 <4.47 <1.05 <1.93 <2.10 <6.39

Garch QML <9.82 <13.66 <4.26 <1.08 <2.80 <2.95 <6.50

LnGarch LS <10.01 <13.64 <4.18 <1.27 <3.24 <3.52 <6.81

LnGarch QML <9.97 <13.93 <4.18 <1.25 <3.21 <3.41 <6.84

InvGarch LS <10.15 <13.53 <4.29 <1.48 <3.64 <3.79 <7.08

InvGarch QML <9.33 <12.91 <3.72 <0.89 <2.56 <3.13 <6.10

Har LS <10.56 <13.64 <4.52 <1.18 <2.01 <2.47 <6.41

Har QML <9.86 <13.74 <4.26 <1.12 <2.93 <3.07 <6.59

Diagonal DCC LS

Garch LS <9.73 <11.98 <3.94 <0.92 <1.71 <2.06 <5.78

Garch QML <9.29 <12.39 <3.99 <1.12 <2.71 <3.02 <6.17

LnGarch LS <9.46 <12.37 <3.92 <1.35 <3.16 <3.76 <6.52

LnGarch QML <9.42 <12.62 <3.92 <1.33 <3.14 <3.66 <6.54

InvGarch LS <9.43 <12.10 <3.95 <1.42 <3.31 <3.68 <6.53

InvGarch QML <8.86 <11.80 <3.52 <0.95 <2.51 <3.16 <5.84

Har LS <9.71 <12.00 <3.97 <1.01 <1.87 <2.47 <5.81

Har QML <9.26 <12.45 <3.95 <1.14 <2.70 <3.11 <6.19

Diagonal DCC QML

Garch LS <10.63 <13.64 <4.46 <1.04 <1.95 <2.14 <6.42

Garch QML <9.80 <13.67 <4.23 <1.05 <2.75 <2.98 <6.49

LnGarch LS <9.99 <13.66 <4.15 <1.25 <3.19 <3.52 <6.80

LnGarch QML <9.95 <13.95 <4.15 <1.23 <3.17 <3.41 <6.82

InvGarch LS <10.15 <13.61 <4.27 <1.45 <3.60 <3.82 <7.08

InvGarch QML <9.34 <12.93 <3.69 <0.88 <2.53 <3.14 <6.10

Har LS <10.59 <13.70 <4.50 <1.16 <2.00 <2.52 <6.43

Har QML <9.86 <13.77 <4.23 <1.10 <2.87 <3.09 <6.58
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Table 14:

Average out-of-sample daily break-even transaction costs BETC, expressed in basis points, of the DCIC minimum
variance portfolio with respect to the DCC minimum variance portfolio. BETC are calculated for a risk-aversion
coefficient of γ = 1 and may be computed for different values of γ by simple multiplication. < and > define the
range of transaction costs for which DCIC is preferred to DCC. The entry A (N) indicates that DCIC is preferred
to DCC for Any (No) value of τ .

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCIC LS

Garch LS <0.91∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

Garch QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >6.07∗∗∗ N ∗∗∗ N ∗∗∗

LnGarch LS N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗ N ∗∗∗

LnGarch QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >0.21 N ∗∗∗ N ∗∗∗

InvGarch LS <0.84 N ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗ N ∗∗∗

InvGarch QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

Har LS <0.64 N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

Har QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >11.47 N ∗∗∗ N ∗∗∗

Scalar DCIC QML

Garch LS <0.76 <0.41∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ <1.08∗∗∗

Garch QML N ∗∗∗ <0.55 A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ <1.72

LnGarch LS <0.07 <0.90 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.34 <2.62

LnGarch QML <0.02 <0.67 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.03 <2.65

InvGarch LS <0.57 <0.13 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.13 <1.46

InvGarch QML <0.11 <0.74 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.20 <3.92

Har LS <0.35 <0.41 A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ <0.89

Har QML N ∗∗∗ <0.50 A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ <1.44

Diagonal DCIC LS

Garch LS N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

Garch QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >0.62 N ∗∗∗ N ∗∗∗

LnGarch LS N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >1.66 N ∗∗∗ N ∗∗∗

LnGarch QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

InvGarch LS N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >0.58 N ∗∗∗ N ∗∗∗

InvGarch QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

Har LS <0.05 N ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ N ∗∗∗

Har QML N ∗∗∗ N ∗∗∗ A ∗∗∗ A ∗∗∗ >0.85 N ∗∗∗ N ∗∗∗

Diagonal DCIC QML

Garch LS <0.52 <0.84 A ∗∗∗ A ∗∗∗ A ∗∗∗ N ∗∗∗ <1.32

Garch QML N ∗∗∗ <1.18 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.26 <2.64

LnGarch LS N ∗∗∗ <1.61 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.68 <4.02

LnGarch QML N ∗∗∗ <1.29 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.32 <3.85

InvGarch LS <1.20 <1.60 A ∗∗∗ A ∗∗∗ A ∗∗∗ <1.30 <3.24

InvGarch QML <1.97 <3.37 A ∗∗∗ A ∗∗∗ A ∗∗∗ <1.54 <9.68

Har LS <1.34 <1.73 >0.35∗∗∗ >0.09∗∗∗ A ∗∗∗ <0.42 <1.73

Har QML N ∗∗∗ <1.14 A ∗∗∗ A ∗∗∗ A ∗∗∗ <0.25∗∗∗ <2.30
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Table 15:

Average out-of-sample daily break-even transaction costs BETC, expressed in basis points, of the DCW minimum
variance portfolio with respect to the DCC minimum variance portfolio. BETC are calculated for a risk-aversion
coefficient of γ = 1 and may be computed for different values of γ by simple multiplication. < and > define the
range of transaction costs for which DCW is preferred to DCC. The entry A (N) indicates that DCW is preferred
to DCC for Any (No) value of τ .

Model 2010∗∗∗ 2011∗∗∗ 2012∗∗∗ 2013∗∗∗ 2014∗∗∗ 2015∗∗∗ All∗∗∗

Scalar DCW

OP >0.22∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗

LS >0.49 >0.16∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ >0.04∗∗∗

QML >0.30 A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗

Diagonal DCW

OP >0.53 A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ >0.23∗∗∗ >0.08

LS >0.64 >0.25 A ∗∗∗ A ∗∗∗ A ∗∗∗ >0.06 >0.10

QML >0.44 A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗

Scalar DCW (2, 1)

OP >0.25 A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗

LS >0.50 >0.09 A ∗∗∗ A ∗∗∗ A ∗∗∗ >0.02 >0.02

QML >0.31 A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗ A ∗∗∗
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Figure 1: Graphical representation of cumulative relative importance of sectors over
the entire period 2010–2015. One–step ahead weight forecasts for individual stocks in
the DJ30 from Dynamic Conditional Weights model (DCW) are taken in absolute value
and then rescaled to sum up to one. Sector values are obtained by aggregation and
then ordered (bottom to top) according to the average relative importance; single sector
positions are readable as a difference from the lower line (top line =1).
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Figure 2: Graphical representation of cumulative relative importance of sectors by year
2010 to 2015. One–step ahead weight forecasts for individual stocks in the DJ30 from
Dynamic Conditional Weights model (DCW) are taken in absolute value and then rescaled
to sum up to one. Sector values are obtained by aggregation and then ordered (bottom
to top) according to the average relative importance; single sector positions are readable
as a difference from the lower line (top line =1).
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