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Abstract Approximate Bayesian computation (ABC) provides us a rigorous tool
to perform parameter inference for models without an easily accessible likelihood
function. Here we give a short introduction to ABC, focusing on applications in bi-
ological science: estimation of parameters of an epidemiological spreading process
on a network and a numerical platelets deposition model. Furthermore, we intro-
duce users to a Python suite implementing ABC algorithms, with optimal use of
high performance computing (HPC) facilities.
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Introduction

With the recent innovations in biological science, we are increasingly facing large
datasets of varied type and more realistic but complex models of natural phe-
nomenon. This trend has led to a scenario where we do not easily have a likelihood
function which is available in closed form and thus easy to evaluate at any given
point (as required by most Monte Carlo and Markov chain Monte Carlo methods).
Thus, traditional likelihood based inference, as Maximum likelihood or Bayesian
methodology, is not possible. Still, if from the complex model, given values of the
parameters that index it, we can forward simulate pseudo-dataset, a new methodol-
ogy becomes available, namely Approximate Bayesian Computation (ABC). Mod-
els that have this possibility of forward simulation are known as simulator-based
models and are becoming more and more popular in diverse fields of science [Mar-
tinez et al., 2016, Turchin et al., 2013, Schaye et al., 2015]; just restricting to the
biological domain we can find many examples: evolution of genomes [Marttinen
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et al., 2015], numerical model of platelet deposition [Chopard et al., 2017], de-
mographic spread of a species [Excoffier et al., 2013] among many. Research in
statistical science in the last decade or so, has illustrateted how ABC can be a tool
to infer and calibrate the parameters of these models.

The fundamental rejection ABC sampling scheme iterates between three step:
First a pseudo-dataset, xxxsim, is simulated from the simulator-based model M (φφφ)
for a fixed parameter value of φφφ . Then we compute a measure of the closeness
between xxxsim and xxx0, the observed dataset, using a pre-defined discrepancy measure
d(xxxsim,xxx0). Finally, based on this discrepancy measure, ABC accepts the parameter
value φφφ when d(xxxsim,xxx0) is less than a pre-specified threshold value ε .

Following this ABC sampler, the intractable likelihood L (φφφ) is approximated
by Ld,ε(φφφ) for some ε > 0, where

Ld,ε(φφφ) ∝ P(d(xxxsim,xxx0)< ε) (1)

and, as a consequence, the accepted parameters follow the posterior distribution of
φφφ conditional on d(xxxsim,xxx0)< ε:

pd,ε(φφφ |xxx0) ∝ P(d(xxxsim,xxx0)< ε)π(φφφ).

For a better approximation of the likelihood function, computationally efficient se-
quential ABC algorithms [Marin et al., 2012, Lenormand et al., 2013, Albert et al.,
2015] decrease the value of the threshold ε adaptively while exploring the parameter
space.

The crucial aspect for a good ABC approximation to the likelihood function is
the choice of the summary statistics, as we define the discrepancy measure between
xxxsim and xxx0 through a distance between the extracted summary statistics from xxxsim

and xxx0. Knowledge domain driven summary statistics are normally chosen keeping
in mind that we want to minimize the loss of information on φφφ contained in the
data through the choice of summary statistics. But one can also rely on automatic
summary selection for ABC, thus removing a subjective component in this choice,
as described in Fearnhead and Prangle [2012], Pudlo et al. [2015], Jiang et al. [2015]
and Gutmann et al. [2017].

ABCpy

ABC provides a tool for statistical inference for simulator-based models, still, the
necessity to simulate lots of pseudo-data, makes the algorithm extremely computa-
tionally expensive when data-simulation itself is costly. Further, the varied types of
data sets available in different domain specific problems have hindered the applica-
bility of ABC algorithms to many applied science domains. Recently, [Dutta et al.,
2017a,d], have developed an High Performance Computing framework to efficiently
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parallelize different ABC algorithms which we believe will be extremely beneficial
for inferential problems across different scientific domains.

ABC and HPC were first brought together in the ABC-sysbio package for the
systems biology community, where sequential Monte Carlo ABC (ABC-SMC)
[T. Toni, 2009] algorithm was efficiently parallelized using graphics processing
units (GPUs). The goal of ABCpy was to overcome the need for users to have
knowledge of parallel programming, as is required for using ABC-sysbio [Liepe
et al., 2010], and also to make a software package available for scientists across
domains. These objectives were partly addressed by parallelization of ABC-SMC
using MPI/OpenMPI Stram et al. [2015], and by making ABC-SMC available for
the astronomical community Jennings and Madigan [2016]. Regardless of these ad-
vances, a recent ABC review article Lintusaari et al. [2017] highlights the depth and
breadth of available ABC algorithms, which can be optimally efficient only via par-
allelization in an HPC environment Kulakova et al. [2016], Chiachio et al. [2014].
These developments emphasized the need of a generalized HPC supported platform
for efficient ABC algorithms, which can be parallelized on multi-processor comput-
ers or computing clusters and is accessible to a broad range of scientists.

ABCpy addressed this need for an user-friendly scientific library of ABC al-
gorithms, which is written in Python and designed in a highly modular fashion.
Existing ABC software suites are mainly domain-specific and optimized for a nar-
rower class of problems. Modularity of ABCpy makes it intuitive to use and easy to
extend. Further, it enables users to run ABC sampling schemes in parallel without
too much re-factoring of existing code. ABCpy includes likelihood free inference
schemes, both based on discrepancy measures and approximate likelihood, provid-
ing a complete environment to develop new ABC algorithms.

Illustrative Applications

To highlight the versatility of ABC and ABCpy in diverse applied problems, we
point the interested reader to two recent research papers with biological applications
in mind: a) estimation of parameters of an epidemiological spreading process on a
contact network[Dutta et al., 2017c] and b) estimation of parameters of a numerical
platelets deposition model [Dutta et al., 2017b].

Epidemics on a Contact Network

Infectious diseases are studied to understand their spreading mechanisms, to evalu-
ate control strategies and to predict the risk and course of future outbreaks. Because
people only interact with a small number of individuals, and because the structure
of these inter- actions matters for spreading processes, the pairwise relationships
between individuals in a population can be usefully represented by a network. For
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modeling the spread of infections on a human contact network, we consider a sim-
ple spreading process, i.e., the standard susceptible-infected (SI) process with unit
infectivity on a fixed network [Zhou et al., 2006, Staples et al., 2016]. In this model,
there are only two states, susceptible and infected, and this process is suitable for
modeling the spread of pathogens in contact networks because a single success-
ful exposure can be sufficient for transmission. In this process, at each time step,
each infected node chooses one of its neighbors with equal probability regardless
of their status (susceptible or infected), and if this neighboring node is susceptible,
the node successfully infects it with probability θ . We denote this model by MS
and parametrize it in terms of the spreading rate θ and of the seed node (the node
representing the first infected person) nSN. For given values of these two parameters,
nSN = n∗SN and θ = θ ∗, we can forward simulate the evolving epidemic over time
using the MS model as

MS[n∗SN,θ
∗]→{NI(t), t = 0, . . . ,T}, (2)

where NI(t) is a list of infected nodes at time t. We simulated an epidemic of a
disease using the above simple contagion process in an Indian village contact net-
work[Banerjee et al., 2013]. The network has 354 nodes and 1541 edges, represent-
ing 354 villagers and reported contacts and social relationships among them. The
epidemic is simulated using θ 0 = 0.3, n0

SN = 70, and the observed dataset xxx0 is the
infected nodes NI(t) for t = t0, . . . ,T with t0 = 20 and T = 70. The marginal pos-
terior distributions and the Bayes estimates of (θ ,nSN) are show in Figure 1. The
inferred posterior distributions for the epidemics on the Indian village contact net-
work, is concentrated around the true parameter values. The Bayes estimates are also
in a very small neighborhood of the true value, specifically the estimated seed-node
(n̂SN) has a shortest path distance of 1 from n0

SN in both the cases.
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Fig. 1: Simple contagion model on Indian village contact network. Panel a shows the density
of the inferred marginal posterior distribution and Bayes estimate of θ , given xxx0, the epidemics on
the Indian village contact network. Panel b displays the average marginal posterior distribution at
different distances from the true seed-node n0

SN. The shortest path length distance between n0
SN = 70

and n̂SN = 59 is 1.

For details on how the inference was performed via ABC and ABCpy, we direct
readers to Dutta et al. [2017]. We can further extend this inferential approach to any
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complex spreading processes on a network, e.g. inference of parameters of complex
contagion model representing a disinformation campaign on a social network is
reported in Dutta et al. [2017].

Platelet Deposition Model

Chopard et al. [2015], Chopard et al. [2017] has recently developed a numerical
model that quantitatively describes how platelets in a shear flow adhere and aggre-
gate on a deposition surface. Five parameters specify the deposition process and are
relevant for a biomedical understanding of the phenomena. An experimental obser-
vations can be collected from a patient, at time intervals, on the average size of the
aggregation clusters, their number per mm2, the number of platelets and the ones
activated per µ` still in suspension. In Dutta et al. [2017b], we have demonstrated
that approximate Bayesian computation (ABC) can be used to automatically explore
the parameter space of this numerical model. To illustrate the performance of ABC,
in Figure 2, we show the inferred posterior distribution of the parameters (adhesion
rate pAd , the aggregation rates pAg and pT , the deposition rate of albumin pF , and
the attenuation factor aT ) of the platelet deposition model. For details on the spe-
cific model and on how the inference was performed via ABC, we direct readers to
Chopard et al. [2017] and Dutta et al. [2017b] correspondingly.
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Fig. 2: Marginal posterior distribution (black-dashed) and Bayes Estimate (back-solid) of
(pAd , pAg, pT , pF ,aT ) for collective data set generated from of 7 patients. The smoothed marginal
distribution is created by a Gaussian-kernel density estimator on 5000 samples drawn from the
posterior distribution using Simulated annealing approximate Bayesian computation [Albert et al.,
2015]. The (gray-solid) line indicates the manually estimated values of the parameters as in
[Chopard et al., 2017].
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The proposed approach can be applied patient per patient, in a systematic way,
without the bias of a human operator. In addition, the approach is computationally
fast enough to provide results in an acceptable time for contributing to a new medical
diagnosis, by giving data that no other known method can provide.

Conclusion

We would like to stress here the fact that ABC inference scheme provides not only a
point estimate of the parameters of interest but also their entire (approximated) pos-
terior distribution thus allowing for uncertainty quantification: the higher the vari-
ability of the posterior distribution the higher the uncertainty inherent in the infer-
ential scheme. Via the ABC approximated posterior one can then construct credible
intervals and perform hypothesis testing. Furthermore ABC allows to compare pos-
sible alternative models by simply adding, to the three steps Rejection ABC scheme
illustrated above, an additional initial layer where first a model index is sampled
from the model prior distribution and then, once a model has been selected a regular
ABC scheme within that model is performed. For details on ABC model selection
via random forest approach see Pudlo et al. [2015].
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