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Abstract With the introduction of high-throughput technologies in clinical and epi-
demiological studies, the need for inferential tools that are able to deal with fat
data-structures, i.e., relatively small number of observations compared to the num-
ber of features, is becoming more prominent. To solve this problem, in this paper
we propose an extension of the dgLARS method to relative risk regression model.
The main idea of proposed method is to use the differential geometric structure of
the partial likelihood function in order to select the optimal subset of covariates.
Abstract L’introduzione di tecnologie di screening ad elevata capacità negli studi
clinici ed epidemiologici ha reso preminente il problema dello sviluppo di metodolo-
gie inferenziali applicabili ai casi in cui la numerosità campionaria è inferiore
al numero di parametri. In questo lavoro proponiamo un’estensione del metodo
dgLARS ai modello di regressione del rischio relativo. L’idea di fondo del metodo
proposto è quella di utilizzare la struttura geometrica della partial likelihood al fine
di selezionare il sottoinsieme ottimo di variabili esplicative.
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1 Introduction

In the study of the dependence of survival time on covariates, the Cox proportional
hazards model [3] has proved to be a major tool in many clinical and epidemiolog-
ical applications. However, when the number of features is large, the simple Cox
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proportional breaks down. Many variable selection techniques for linear regression
models have been extended to the context of survival models. They include best-
subset selection, stepwise selection, asymptotic procedures based on score tests,
Wald tests and other approximate chi-squared testing procedures, bootstrap pro-
cedures and Bayesian variable selection. However, the theoretical properties of
these methods are generally unknown. Recently a family of penalized partial likeli-
hood methods, such as the Lasso [11] and the smoothly clipped absolute deviation
method [5] were proposed for the Cox proportional hazards model. By shrinking
some regression coefficients to zero, these methods select important variables and
estimate the regression model simultaneously. Whereas the Lasso estimator does
not possess oracle properties, the smoothly clipped absolute deviation estimator for
linear models, has better theoretical properties. However, the non-convex form of
the penalty term of the latter makes its optimization challenging in practice, and the
solutions may suffer from numerical instability. In this paper we propose an alterna-
tive to the penalized inference methods. We extend the differential-geometric least
angle regression method (dgLARS) [1] to the case of the Cox proportional hazards
model.

2 The differential geometrical structure of a relative risk
regression model

In analyzing survival data, one of the most important tools is the hazard function.
Formally, let T be the absolutely continuous random variable associated with the
survival time and let f (t) be the corresponding probability density function. The
hazard function is defined as λ (t) = f (t)/{1−

∫ t
0 f (s)ds} and specifies the instanta-

neous rate at which failures occur for subjects that are surviving at time t. Suppose
that the hazard function λ (t) can depend on a p-dimensional vector of covariates
which can depend on time and denoted by xxx(t) = (x1(t), . . . ,xp(t))>. The relative
risk regression models [10] are based on the assumption that the vector xxx(t) influ-
ence the hazard function λ (t) by the following relation λ (t;xxx) = λ0(t)ψ(xxx(t);βββ ),
where βββ is a p-dimensional vector of unknown fixed parameters, λ0(t) is the base
hazard function at time t which is left unspecified and, finally, ψ : R→R is a fixed
twice continuously differentiable function, called the relative risk function. The pa-
rameter space is such that ψ(xxx(t);βββ )> 0 for each βββ ; we also assume that the relative
risk function is normalized, i.e., ψ(000;βββ ) = 0.

Suppose that n observations are available and let with ti the ith observed failure
time. Assume that we have k uncensored failure times and let us denoted by D the
set of indices for which the corresponding failure time is observed. The remaining
failure times are right censored. Under the assumption of independent censoring,
the inference about βββ can be carried out by the following partial likelihood function

Lp(βββ ) = ∏
i∈D

ψ(xxxi(ti);βββ )

∑ j∈R(ti) ψ(xxx j(ti);βββ )
, (1)
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where R(t) denotes the risk set, i.e. the set of indices corresponding to the subjects
how have not failed and are still under observation just prior to time t. In order
to extend the dgLARS method to the relative risk regression model, it is useful to
see the partial likelihood (1) as arising from a multinomial sampling scheme. Con-
sider an index i ∈ D and let YYY i = (Yih)h∈R(ti) be a multinomial random variable with
sample size equal to 1 and cell probabilities πππ i = (πih)h∈R(ti) ∈ Πi. Assuming that
the random vectors YYY i are independent, the joint probability density function is an
element of the set S =

{
∏i∈D ∏h∈R(ti) π

yih
ih : (πππ i)i∈D ∈

⊗
i∈D Πi

}
. In the following

of our differential geometric constructions, the set S will play the role of ambient
space. Consider the following model for the conditional expected value of the ran-
dom variable Yih: Eβββ (Yih) = πih(βββ ) = ψ(xxxh(ti);βββ )/∑ j∈R(ti) ψ(xxx j(ti);βββ ), then our
model space is the set M =

{
∏i∈D ∏h∈R(ti) πih(βββ )

yih : (πππ i)i∈D ∈
⊗

i∈D Πi
}

. The par-
tial likelihood (1) is formally equivalent to the likelihood function associated with
the model space M if we assume that for each i∈D, the observed yih is equal to one if
h is equal to i and zero otherwise. Let `(βββ ) be the log-likelihood function associated
to the model space M and let ∂m`(βββ ) = ∂`(βββ )/∂βm. The tangent space Tβββ M of M at
the model point ∏i∈D ∏h∈R(ti) πih(βββ )

yih is defined as that linear vector space spanned
by the p elements of the score vector, formally Tβββ M = span{∂1`(βββ ), . . . ,∂p`(βββ )}.
Under the standard regularity conditions, it is easy to see that Tβββ M is the linear vec-
tor space of the random variables v(βββ ) = ∑

p
m=1 vm∂m`(βββ ) with zero expected value

and finite variance. As a simple consequence of the chain rule we have the following
identity for any tangent vector belonging to the tangent space Tβββ M, i.e.

v(βββ )=
p

∑
m=1

vm∂m`(βββ )= ∑
i∈D

∑
h∈R(ti)

(
p

∑
m=1

vm
∂πih(βββ )

∂βm

)
∂`(βββ )

∂πih
= ∑

i∈D
∑

h∈R(ti)
wih

∂`(βββ )

∂πih
,

which shows that Tβββ M is a linear vector subspace of the tangent space Tβββ S spanned
by the random variables ∂ih`(βββ ) = ∂`(βββ )/∂πih. To define the notion of angle be-
tween two given tangent vectors belonging to Tβββ M, say v(βββ ) and w(βββ ), we shall
use the information metric [9], i.e.

〈v(βββ );w(βββ )〉βββ = Eβββ (v(βββ )w(βββ )) = vvv>I(βββ )www, (2)

where vvv= (v1 . . . ,vp)
>, www= (w1 . . . ,wp)

> and I(βββ ) is the Fisher information matrix
evaluated at βββ . As observed in [6], the matrix I(βββ ) used in (2) is not exactly equal
to the Fisher information matrix of the relative risk regression model, however it has
the appropriate asymptotic properties for the inference [8].

3 dgLARS method for relative risk regression model

dgLARS method is a sequential method developed to estimate a sparse solution
curve embedded in the parameter space based on a differential geometric char-
acterization of the Rao score test statistic obtained considering the inner prod-
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uct between the bases of the tangent space Tβββ M and the tangent residual vector
r(βββ ) =∑i∈D ∑h∈R(ti) rih(βββ )∂ih`(βββ )∈ Tβββ S, where rih(βββ ) = yih−πih(βββ ). As observed
in [1], the mth signed Rao score test statistic satisfies the following differential geo-
metric characterization, i.e.

ru
m(βββ ) = I−1/2

mm (βββ )∂m`(βββ ) = cos(ρm(βββ ))‖r(βββ )‖βββ , (3)

where Imm(βββ ) is the Fisher information for βm, ‖r(βββ )‖2
βββ
=Eβββ (r(βββ )2) and cos(ρm(βββ ))

is a generalization of the Euclidean notion of angle between the mth column of
the design matrix and the residual vector. Characterization (3) gives us a natural
way to generalize the equiangularity condition [4]: two given predictors, say the
mth and nth, satisfy the generalizes equiangularity condition at the point βββ when
|ru

m(βββ )|= |ru
n(βββ )|. Inside the dgLARS theory, the generalized equiangularity condi-

tion is used to identify the predictors that are included in the model.
The nonzero estimates are formally defined as follows. For any data set there is a

finite sequence of transition points, say γ(1) ≥ . . .≥ γ(K) ≥ 0, such that for any fixed
γ between γ(k+1) and γ(k) the sub vector of the non nonzero dgLARS estimates,
denoted as β̂ββ ˆA (γ) = (β̂m(γ))m∈ ˆA , satisfies the following conditions:

ru
m{β̂ββ ˆA (γ)} = smγ, m ∈ ˆA

|ru
n{β̂ββ ˆA (γ)}| < γ, n /∈ ˆA

where sm = sign{β̂m(γ)} and ˆA = {m : β̂m(γ) 6= 0}, called active set, is the set of
the indices of the predictors that are included in the current model, called active
predictors. In any transition point, say for example γ(k), one of the following two
conditions occurs:

1. there is a non active predictor, say the nth, satisfying the generalized equiangu-
larity condition with any active predictor, i.e.,

|ru
n{β̂ββ ˆA (γ(k))}|= |ru

m{β̂ββ ˆA (γ(k))}|= γ
(k), (4)

for any m in ˆA , then it is included in the active set;
2. there is an active predictor, say the mth, such that

sign[ru
m{β̂ββ ˆA (γ(k))}] 6= sign{β̂m(γ

(k))}, (5)

then it is removed from the active set.

Given the previous definition, the path of solutions can be constructed in the fol-
lowing way. Since we are working with a class of regression models without inter-
cept term, the starting point of the dgLARS curve is the zero vector this means
that, at the starting point, the p predictors are ranked using |ru

m(000)|. Suppose
that a1 = argmaxm |ru

m(000)|, then ˆA = {a1}, γ(1) is set equal to |ru
a1
(000)| and the

first segment of the dgLARS curve is implicitly defined by the nonlinear equa-
tion ru

a1
{β̂a1(γ)}− sa1γ = 0. The proposed method traces the first segment of the
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dgLARS curve reducing γ until we find the transition point γ(2) corresponding to
the inclusion of a new index in the active set, in other words, there exists a predictor,
say the a2th, satisfying condition (4), then a2 is included in ˆA and the new segment
of the dgLARS curve is implicitly defined by the system with nonlinear equations:

ru
ai
{β̂ββ ˆA (γ)}− saiγ = 0, ai ∈ ˆA ,

where β̂ββ ˆA (γ) = (β̂a1(γ), β̂a2(γ))
>. The second segment is computed reducing γ and

solving the previous system until we find the transition point γ(3). At this point, if
condition (4) occurs a new index is included in ˆA otherwise condition (5) occurs
and an index is removed from ˆA . In the first case the previous system is updated
adding a new nonlinear equation while, in the second case, a nonlinear equation is
removed. The curve is traced as previously described until parameter γ is equal to
a fixed value that can be zero, if the the sample size is large enough, or a positive
value if we are working in a high-dimensional setting, i.e., the number of predictors
is larger than the sample size. In this way we can avoid the problems coming from
the overfitting of the model. From a computational point of view, the entire dgLARS
curve can be computed using the algorithms proposed in [2, 7].

4 Simulation study

In this section we compare the method introduced in Section 3 with three popular
algorithms named CoxNet, CoxPath, and CoxPen. Given the fact that these methods
have only been implemented only for Cox regression model, our comparison will
focus on this kind of relative risk regression model. In the following of this section,
dgLARS method applied to the Cox regression model is named dgCox model.

We simulated one hundred datasets from a Cox regression model where the
survival times ti (i = 1, . . . ,n) follow an exponential distributions with parameter
λi = exp(βββ>xxxi), and xxxi is sampled from a p-variate normal distribution N(0,Σ); the
entries of Σ are fixed to corr(Xm,Xn) = ρ |m−n| with ρ = 0.9. The censorship is ran-
domly assigned to the survival times with probability π ∈ {0.2,0.4}. To emulate an
high-dimensional setting, we fixed the sample size to 50, the number of predictors
to 100 and βm = 0.5 (m = 1, . . . ,30); the remaining regression coefficients are zero
in order to have a sparse vector. To remove the effects coming from the information
measure used to select the optimal point of each paths of solutions, we evaluated
the global behaviour of the paths by using the ROC curve and the corresponding
Area Under the Curve (AUC). Figure 1 shows that dgCox model is clearly the supe-
rior approach for both levels of censorship. For the same false positive rate, the true
positive rate of the dgCox method is around 10% higher than the rate obtained by
CoxNet, CoxPath and CoxPen.
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Fig. 1 Results from the simulation study; for each scenario we show the averaged ROC curve for
dgCox, CoxNet, CoxPath and CoxPen algorithm. The average Area Under the Curve (AUC) is also
reported. The 45-degree diagonal is also included in the plots.
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