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Abstract In modal clustering framework groups are regarded as the domains of
attraction of the modes of probability density function underlying the data. Opera-
tionally, to obtain a partition, a nonparametric density estimate is required and kernel
density estimator is commonly considered. When resorting to these methods a rel-
evant issue regards the selection of the smoothing parameter governing the shape of
the density and hence possibly the modal structure. In this work we propose a cri-
terion to choose the bandwidth, specifically tailored for the clustering problem since
based on the minimization of the distance between a partition of the data induced
by the kernel estimator and the whole-space partition induced by the true density.
Abstract Nell’ambito del clustering, l’approccio modale associa i gruppi ai domini
di attrazione delle mode della funzione di densità sottostante i dati. L’individuazione
dei gruppi richiede una stima non parametrica della densità, spesso basata su meto-
di kernel. Un problema rilevante, a tale scopo, riguarda la selezione del parametro
di lisciamento che governa la forma della densità e, di conseguenza, la struttura
modale. In questo lavoro si propone un criterio per la selezione del parametro di
lisciamento, specificamente orientato al problema del clustering non parametrico e
basato sulla minimizzazione di una misura di distanza tra la partizione dei dati in-
dotta da uno stimatore kernel e la partizione dello spazio indotta dalla vera funzione
di densità.
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1 Introduction

Distance-based clustering is probably the most common approach to the unsuper-
vised problem of obtaining a partition of a set of data into a number of groups. In
spite of an intuitive interpretation and conceptual simplicity, this approach lacks of
a ‘ground truth’, thus preventing the possibility to resort to formal statistical pro-
cedures. The density-based approach to cluster analysis overcomes such drawback
by providing a formal definition of cluster, based on some specific features of the
probability density function assumed to underlie the data. This approach has been
developed following two distinct directions. The parametric one hinges on mod-
elling the density function by means of a mixture distribution, where clusters are
associated to the mixture components. Readers can refer to [3] for a recent review.
This work focuses on the nonparametric - or modal - formulation, which is built on
the concept of clusters as the “domains of attraction” of the modes of the density
underlying the data [7]. The local maxima of the density are regarded to as the arche-
types of the clusters, which are represented by the sorrounding regions (see Figure
1 for an illustration). These concepts have been translated into a formal definition
of cluster by [1], resorting to notions and tools borrowed from Morse theory (see
[2] for an introduction). Operationally, modal clustering has been pursued by two
different strands of methods, both based on a preliminary nonparametric estimate
of the density. The first strand looks directly for the modes of the estimated density
and associates each cluster to the set of points along the steepest ascent path towards
a mode, while the second one associates the clusters to the estimated density level
sets of the sample space. For a detailed review see [4].

Modal clustering is appealing for several reasons. The outlined notion of cluster
is close to the intuition of groups as dense regions; consistently, clusters are not
constrained to have some particular pre-determined shape and resorting to nonpara-
metric tools allow to mantain this flexibility. Also, since clusters are the domains
of attraction of the density modes, the number of clusters is an intrinsic property of
the data generator mechanism and its determination is itself an integral part of the
estimation procedure. Furthermore, the existence of a formalized notion of cluster,
based on the features of the density, allows to define an ideal population clustering
goal, and frames the clustering problem into a standard inferential context.

Despite enjoying these relevant strenghts, when resorting to the nonparametric
formulation, some criticalities have to be faced, mostly related to the estimation
of the density underlying the data. Firstly obtaining nonparametric density estim-
ates is usually computationally burdensome. This issue gets worse when working
in high-dimensional spaces where nonparametric estimators suffer of the “curse of
dimensionality”. A relevant issue is that, regardless of the specific choice of the non-
parametric density estimator, the selection of a smoothing parameter is required.
Choosing this parameter turns out to be crucial since an inaccurate choice could
lead to a misleading resulting estimate: too large values may lead to cover interest-
ing structures, while too small values may lead to the appearance of spurious modes.
If a kernel density estimator, the most common choice in the considered framework,
is employed, the selection of the smoothing parameter is based on some reference
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Fig. 1 Partitions induced
by the modes of the density
function in two examples of
mixtures of bivariate normal
densities.

524 J. E. CHACÓN

FIG. 5. Ideal modal population clustering for some normal mixtures densities.

low the steepest ascent path defined by the gradient di-
rection. Moreover, estimating this path is precisely the
goal of the mean shift algorithm (see Arias-Castro, Ma-
son and Pelletier, 2013).

3.1 Examples

In Figure 5 we give further examples of how the ideal
population goal of modal clustering looks for three
of the bivariate normal mixture densities included in
Wand and Jones (1993), namely, with their terminol-
ogy, densities (H) Bimodal IV, (K) Trimodal III and (L)
Quadrimodal, plus the normal mixture #10 Fountain
from Chacón (2009). These densities have a number
of modes ranging from two to five, respectively, and
hence that is the true number of population clusters for
each of these models, in the sense of modal clustering.

Each graph contains a contour plot of the density
function; the location of the modes is marked with a tri-
angle pointing upward (�), the saddle points with a ro-
tated square (�), and the only local minimum, appear-
ing in the plot of the Quadrimodal density, is marked

with a triangle pointing downward (�). The thick lines
passing through the saddle points are their correspond-
ing unstable manifolds and represent the border be-
tween the different population clusters.

All these features have been computed numerically,
making use of some results from the thorough analy-
sis of normal mixture densities given in Ray and Lind-
say (2005). For instance, the Newton–Raphson method
has been used for the location of the modes by finding a
zero gradient point starting from the component means,
taking into account that both the location of the modes
and component means are different, but very close.
Next, the saddle points are searched along the ridgeline
that connects every two component means, since all
the critical points of the density must lie on this curve,
by Theorem 1 in Ray and Lindsay (2005). Finally, the
borders between the population clusters are obtained
by numerically solving the initial value problem (3.1),
starting from a point slightly shifted from each saddle
point, along the direction of the eigenvector of its Hes-
sian corresponding to a negative eigenvalue.

rule or on criteria attempting to estimate properly the underlying density function.
Even if these criteria have proved to produce appropriate clustering results in dif-
ferent situations, we believe that the clustering problem, being of a different nature
with respect to the estimation of the density, would require a different rationale. In
this work, a possible way to choose the optimal amount of smoothing, hinging on
the specific clustering aim, is discussed. After formally defining a convenient loss
function to measure the distance between data and population clustering, in the fol-
lowing we obtain its asymptotic expansion which, through a minimization, allows
a focused selection of the smoothing parameter. Implications of this selection are
finally discussed.

2 Kernel density estimation

According to the nonparametric formulation of density-based clustering the ob-
served data X = {xi}i=1,...,n,xi ∈ R, are supposed to be sampled from a random
variable X with unknown density f . Note that, initially, we restrict our attention
to the univariate case to allow a more rigorous treatment of the problem, with the
intention to generalize the results to higher dimensional situations. To obtain a par-
tition of the data adopting a nonparametric clustering perspective, regardless of its
operational formulation (level set-based or mode seeking-based), an estimate f̂ of
the true density f is needed. In the rest of the paper we focus on the kernel density
estimator

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi

h

)
, (1)

where K is the kernel, usually a symmetric density function, and h > 0 is the band-
width, controlling the smoothness of the resulting estimate. A large value for h will
tend to oversmooth the density, possibly covering some revelant features, while
a small value will lead to an undersmoothed estimate where spurious modes (i.e.
clusters) could arise.
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Fig. 2 Two density functions
that are not close but induce
exactly the same clustering.
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instead, this distance is solely determined by the two
components that are furthest from each other.

Obviously, a sample analogue is also obtained in this
case by replacing P for the empirical probability mea-
sure, leading to

d̂H (C,D)

= 1

n
max

{
max

i=1,...,r
min

j=1,...,s

n∑
k=1

ICi�Dj
(Xk),

max
j=1,...,s

min
i=1,...,r

n∑
k=1

ICi�Dj
(Xk)

}
,

which seems not to have been considered previously as
a distance between two clusterings of the data.

4.3 Consistency of Data-Based Clusterings

As indicated above, a data-based clustering is under-
stood as any procedure that induces a clustering Ĉn of
a probability distribution P based on the information
obtained from a sample X1, . . . ,Xn from P . Once a
clustering methodology has been chosen, and its ideal
population goal C0 is clearly identified, a data-based
clustering Ĉn can be said to be consistent if it gets
closer to C0 as the sample size increases. Formally, if
d(Ĉn,C0) → 0 as n → ∞ for some of the modes of
stochastic convergence (in probability, almost surely,
etc.), d represents one of the distances between clus-
terings defined above or any other sensible alternative.
Note that a different notion of consistency, specifically
intended for the cluster tree approach, is studied in
Chaudhuri and Dasgupta (2010).

For density-based clustering, a plug-in strategy to
obtain data-based clusterings would consist of replac-
ing the unknown density f with an estimator f̂n.
Obvious candidates for the role of f̂n include non-
parametric density estimators for modal clustering or
mixture model density estimators with parameters fit-
ted by maximum likelihood for mixture model clus-
tering. This is a very simple approach that involves to
some extent estimating the density function to solve the
clustering problem (unsupervised learning).

According to von Luxburg (2004), page 21, this
plug-in strategy may not be a good idea because den-
sity estimation is a very difficult problem, especially
in high dimensions. However, a similar situation is
found in the study of classification (supervised learn-
ing), where the optimal classifier, the Bayes rule, de-
pends on the regression function of the random labels
over the covariates. Here, even if classification can be

FIG. 8. Two density functions that are not close but induce exactly
the same clustering.

proved to be a problem easier than regression, never-
theless, regression-based algorithms for classification
play an important role in the development of super-
vised learning theory (see Devroye, Györfi and Lugosi,
1996, Chapter 6).

Along the same lines, Figure 8 illustrates why we
should not completely discard density estimation as an
intermediate step for clustering. Figure 8 shows a typ-
ical situation where the solid line is the true density
and the dashed line is a kernel density estimator, since
an expansion of its pointwise bias shows that, on av-
erage, the kernel estimator underestimates the maxima
and overestimates the minima (Wand and Jones, 1995,
page 21). But even if the two density functions are not
really close in any global sense, they produce exactly
the same clusterings of R.

In any case, the following result shows that the plug-
in strategy leads to consistent data-based modal clus-
terings as long as the first and second derivatives of the
sequence of density estimators converge uniformly to
their true density counterparts.

THEOREM 4.1. Let a Morse function f be the den-
sity of a univariate probability distribution P with com-
pact support, and denote by C0 the ideal modal cluster-
ing that it induces, as defined in Section 3. Let {f̂n} be
a sequence of density estimators such that f̂

(j)
n → f (j)

uniformly almost surely for j = 1,2, with (j) standing
for the j th derivative. Denote by Ĉn the modal cluster-
ing induced by f̂n. Then:

(a) #Ĉn → #C0 with probability one as n → ∞,
where #A denotes the number of elements in a set A.

(b) Both dP (Ĉn,C0) → 0 and dH (Ĉn,C0) → 0 with
probability one as n → ∞.

The proof of this result is shown in the Appendix.
The analysis of the proposed distances between cluster-
ings is greatly simplified in the univariate case since the
cluster boundaries are solely determined by the points
of local minima of the density. The extension of this
result for dimension d ≥ 2 seems quite a challenging

The usual approach to select the bandwidth consists in minimizing some spe-
cific optimality criterion: the most used one is the Mean Integrated Squared Error
(MISE)

MISE(h) = E
∫
R
{ f̂h(x)− f (x)}2dx (2)

which employs the L2-distance to assess the performance of the estimator. However,
this expression does not have a tractable closed form and its asymptotic approxim-
ation -AMISE- is usually minimized, instead. Since both the MISE and the AMISE
depend on the unknown f , different approaches to estimate them have been pursued,
such as the ones based on least square cross validation, biased cross validation or
plug-in bandwidth selectors. For a more comprehensive review and comparison see,
e.g., [8].

3 The proposed selector

The selectors introduced in Section 2 are designed to choose the bandwidth so that
it induces an appropriate estimate of the density. Nonetheless density estimation and
clustering are two different problems with different requirements. It has been shown
(e.g. [1]) that, even if two density functions are not really close, they can produce
exactly the same partition of the data; see Figure 2 for an example. Furthermore,
modal clustering strongly depends on some specific characteristics of the density
function (the gradient for the mode seeking-based formulation and the high-density
regions for the level set-based one) while, minimizing criteria such as the AMISE,
an appropriate estimate is required in a global sense.

Our contribution hence finds its motivation in the lack of bandwidth selectors
specifically conceived for nonparametric cluster analysis. In a similar fashion, even
without specifically referring to clustering, [6] develop a plug-in type bandwidth se-
lector that is appropriate for estimation of the highest density regions thus focusing
on the modal regions, particularly relevant in the clustering formulation outlined
above.

When density estimate is employed to subsequently partition the data, a more
specifically tailored and appropriate performance measure than the L2-distance
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should be considered to select the amount of smoothing. Recalling [1], a natural way
to quantify the performance of a data-based clustering is to consider the distance in
measure between sets, where the measure has to be intended as the probability dis-
tribution with density f .

Formally, let C = {C1, . . . ,Cr} and D = {D1, . . . ,Dr} be two clusterings with the
same number of groups r, their distance in measure can be measured by

d1(C ,D) = min
ν∈P

r

∑
i=1

P(Ci∆Dν(i)) , (3)

where P is the set of the permutation of {1, . . . ,r}, and C∆D = (C∩Dc)∪(Cc∩D).
In the following we will actually consider

dP(C ,D) =
1
2

min
ν∈P

{
r

∑
i=1

P(Ci∆Dν(i))+
s

∑
i=r+1

P(Dν(i))

}
, (4)

accounting for the intrinsic redundancy in (3) and for the possibility of having clus-
tering with different number of groups. This distance can be seen as the minimal
probability mass that needs to be moved to transform one clustering into the other.

Consider C0 as the ideal population clustering induced by the true density f and
Ĉn a data-based partition obtained from the sample X . The idea is to quantify the
quality of Ĉn by measuring its distance in measure from C0. For large n, since the
estimated number converges to the true number of clusters, it can be shown [1,
Theorem 4.1] that (4) could be written as

dP(Ĉn,C0) =
r−1

∑
j=1
|F(m̂ j)−F(m j)| , (5)

where F is the distribution function associated with f while m1, . . . ,mr−1 and
m̂1, . . . , m̂r−1 denote respectively the local minima (i.e. cluster boundaries in the uni-
variate setting) of f and f̂ . Through two Taylor expansions, under some regularitiy
conditions [1, Theorem 4.1], we obtain

|F(m̂ j)−F(m j)| '
f (m j)

f (2)(m j)
| f̂ (1)(m j)| , (6)

where f ( j) is the j− th derivative of f . To obtain an asymptotic expression for (6)
we have to study further the limit behavior of f̂ (1)(m j). Considering that, if h→ 0
and nh2r+1→ ∞, it is known that

(nh2r+1)1/2{ f̂ (r)(x)−Kh ∗ f (r)(x)} ∼N (0,R(K(r)) f (x)) , (7)

where R(K(r)) =
∫
R(K

(r)(x))2dx and (h ∗ g)(x) =
∫

h(x− y)g(y)dy. For a detailed
treatment of the behaviour of kernel estimators at the critical points of a density,
see [5]. Studying appropriately the bias term in (7), considering r = 1 and focusing



6 Alessandro Casa, José E. Chacón and Giovanna Menardi

on the local minima (i.e. x = m j) we end up obtaining the limit distribution for the
quantity of interest

n2/7 f̂ (1)(m j)∼N

(
β 2 f (3)(m j)µ2(K)

2
,

R(K(1)) f (m j)

β 3

)
,

where µ2(K) =
∫
R x2K(x)dx and β = n1/7h.

Thus, considering the property of a folded normal distribution and after some al-
gebra, the asymptotic expected distance in measure (EDM) between a data cluster-
ing Ĉn and the ideal population clustering C0 is given by

E(dP(Ĉn,C0)) =
r−1

∑
j=1

f (m j)

f (2)(m j)
E(| f̂ (1)(m j)|)

'
r−1

∑
j=1

f (m j)

f (2)(m j)
n−2/7{2σ

2
φσ (µ)+µ[1−2Φσ (−µ)]} , (8)

where φσ and Φσ denote respectively the density and the distribution function of a
N (0,σ2) random variable, µ = β 2 f (3)(m j)µ2(K)/2 and σ2 = R(K(1)) f (m j)/β 3.
The optimal bandwidth hdP for modal clustering purposes can be then obtained as
hdP = argminhE(dP(Ĉn,C0)) by means of numerical optimization, after obtaining
a suitable estimate of the unknown quantities f (·) and f (2)(·) in the guise of the
MISE/AMISE minimization. Another viable solution would be to work with a more
manageable upper bound of (8) in order to obtain an explicit formula for the min-
imizer.

Further work is required to evaluate the performance of the proposed bandwidth
selector as well as its comparison with some alternatives. There is much room
for proceeding, and a multivariate extension of the discussed selector is needed to
provide it with a concrete usability in more realistic settings.
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