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Abstract We consider time series of field failure data (warranty claims) of domestic
appliances, manufactured by different plants, with the aim of forecasting failures
within the warranty period. The monthly failure profiles over two-year periods dis-
play variation across monitoring epochs and also batch-to-batch variation. A non-
linear state space model is developed to jointly represent the variation of the under-
lying failure rate parameters and the observed occurrence of failures, obtaining a
dynamic Poisson-Lognormal model with a meaningful covariance structure of fail-
ure rates between monitoring epochs. An adaptation of the auxiliary particle filter
is used for parameter learning and forecasting. A series of examples with data from
two different production plants show that it is possible to obtain a small forecasting
error for claims having very different patterns.
Abstract Analizziamo serie storiche di riparazioni in garanzia di elettrodomestici,
prodotti da impianti differenti, per prevedere la frequenza di guasti entro la fine
del periodo di garanzia. I profili di guasto mensili in periodi di due anni mostrano
variazioni sia tra periodi di monitoraggio sia tra lotti di produzione. Sviluppiamo un
modello state space per rappresentare allo stesso tempo la variazione del parametro
del tasso di guasto sottostante e l’apparizione dei guasti, ottenendo un modello di-
namico Poisson-Lognormale con una appropriata struttura di covarianza tra pe-
riodi di monitoraggio. Utilizziamo un adattamento dell’auxiliary particle filter per
la stima dei parametri statici e per la previsione. Alcuni esempi con dati da due
impianti di produzione mostrano che è possibile ottenere un piccolo errore di previ-
sione per serie di guasti post-vendita con profili molto diversi.
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1 Introduction

Warranty data have long been recognized as a source of useful information for sev-
eral purposes, some of which are prediction of future claims, comparison of groups
of products and identification of faulty design or material defects or undetected pro-
duction line problems. [5] provided one of the first review articles on this subject.

Claims are often aggregated by epoch index (e.g. by month) for every production
batch, so that available data may be represented by nt , for the number of items
produced at epoch t, and yt j, for the number of claims at epoch t + j−1 for batch t,
j = 1, . . . ,d, where d is the duration of the warranty period.

[5] proposed to model the claim arrival process of a given production batch as
a sequence of independent Poisson random variables: Yt j ∼ Poisson(ntλ j), as j =
1, . . . ,d, where λ j is the expected number of failures per produced item in batch
t at epoch t + j− 1. [9] used the same model for the early detection of reliability
problems. Other works are focussed on the modelling of failure times instead ([3];
[4]).

The model based on independent Poisson counts has the main drawback that
λ j does not depend on t so it cannot adequately describe batch-to-batch variation,
which could be attributed to: material defects due for example to a change of sup-
plier; changes in the production line that may affect reliability; other unmeasured
batch to batch heterogeneity.

This deficiency could be addressed following [6], who introduced a rate function
for car warranty data, depending on a unit-specific random effect Zt and a usage
function modelled as Ut j = jZt . This approach requires to select a parametric form
for the rate function and does not include possible dependence among unit failure
rates at close t values. Furthermore it was developed for situations in which times of
occurrence of failures of each unit are available, which is not our present situation.

In this work we have proposed a state space modelling framework in which the
observation equation for (conditionally independent) describes a Poisson distribu-
tion, whereas the batch-to-batch heterogeneity and the possible dependence among
failures of units from batches close in time is represented by a state transition equa-
tion on failure rates. In this way the failure rates are regarded as generated by a
stochastic process and no assumption on their form is needed. On the other hand,
we will focus on the specification of a meaningful dependence structure among fail-
ure rates and on a particle learning algorthm, which will provide forecasts on future
failure rates before the end of the warranty period and also learn about unknown
model parameters.

Our methodology has been applied to claims regarding home appliences manu-
factured by a multinational company with markets and production plants in several
countries.
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2 A state space model

Let yt = (yt1, . . . ,ytd)
T and λt = (λt1, . . . ,λtd)

T , where, unkile the introductory sec-
tion, λt now denotes a vector of failure rates. We consider a state space model for
claims

yt j ∼ Poisson(ntλt j), j = 1, . . . ,d
λt |λt−1 ∼ f (λt |λt−1;θ)

(1)

where θ is an unknown parameter. This model is flexible enough to be able to de-
scribe batch-to-batch variation, dependence between batches, dependence between
claim numbers in different epochs for the same batch, variation of claim reporting
patterns. The task is now to select the form of the state transition equation, which
we will do by examining observations from two production plants, where epochs are
months, in Figure 2. The left-hand panels show a substantial batch-to-batch varia-
tion of observed failure rates for entire batches (number of failures in two years
divided by the batch size). The right-hand panels highlight the within-batch varia-
tion, that is, how the overall number of failures in two years is distributed over the
epochs (months) for all observed batches, with variablity in the shape of the curves.

A model which separates these two types of variation is the following Poisson-
Dirichlet model

yt j ∼ Poisson(nt µt pt j), j = 1, . . . ,d
log(µt) = log(µt−1)+σwt

pt = γ pt−1 +(1− γ)qt

(2)

where µt is a scalar, qt ∼ Dir(Mη), a d-dimensional Dirichlet distribution with
mass parameter M and shape parameter η = (η1, . . . ,ηd) such that ∑ j η j = 1, and
γ ∈ (0,1), wt ∼N(0,1). The unknown parameter θ includes σ , η and M. The second
equation describes the dynamics of the overall batch failure rate, whereas the third
one describes the within-batch variation, also defining a covariance structure among
epochs in the same batch via the Dirichlet error qt .

A more tractable version of this model, with a view to sequential Bayesian pa-
rameter update, can be obtained by collapsing the two state equations into one. Let-
ting λt j = µt pt j, we derive the following:

logλt j = logλt−1, j + εt j (3)

where εt j = logλt−1, j + log(γ + (1− γ)qt j/pt−1, j) +σwt and the vector εt has a
non-diagonal covariance matrix, which we can approximate via error-propagation
formulas from the covariance structure of qt . By doing so, we find

Var(εt j)'
(1− γ)2η j(1−η j)

M+1
1

(γ pt−1, j +(1− γ)η j)2 +σ
2

which is further approximated by
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Fig. 2: First column: plot of pairs (t,∑ j yt j/nt); second column: plots of pairs ( j,yt j/nt), for all
available values of t

(1− γ)2

M+1
(1−η j)

η j
+σ

2 = τ
2 (1−η j)

η j
+σ

2

using η j for pt−1, j. Continuing with the covariances, by the error propagation for-
mulas and using η j for pt−1, j, Cov(εt j,εtr)'−τ2/2+σ2 and finally E(εt j)' 0 .

Then, the new Poisson-Lognormal state-space model is defined as
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yt j ∼ Poisson(nteαt j), j = 1, . . . ,d
αt = αt−1 + εt

(4)

where αt = logλt , εt ∼ Nd(0,Σ) and

Σ j j = τ
2 (1−η j)

η j
+σ

2, j = 1, . . . ,d

Σ jr =−
τ2

2
+σ

2, j,r = 1, . . . ,d, j 6= r .

(5)

Model (4)-(5) is not equivalent to the original model (2) and the normality of
the error term has been assumed ex post, however this approximation procedure has
provided a justification for applying a certain covariance structure to the logarithms
of the failure rates. Furthermore, conditional on αt−1, the model for (yt ,αt) is the
multivariate Poisson-lognormal model of [1], for which Var(Yt j)> E(Yt j), allowing
for overdispersion relative to the Poisson distribution.

3 Particle filtering for claim forecasting

Let α t = (α1, . . . ,αt) and yt = (y1, . . . ,yt). The filtering distribution at time t is

f (αt |yt)

and it encodes the state of information on the claim rate vector given the observed
claims. However, the needed warranty claim rate information for batch t is already
provided by ∑ j yt j/nt , and the filter becomes useful for an early assessment of the
overall claim when only a part of yt is observed. So we seek to obtain

f (αt |yt−1,yt1, . . . ,ytrt ), rt < d,

where rt is the latest observed epoch for batch t, taking advantage of the covariance
structure of our state-space model.

By combining the methodology of the auxiliary particle filter (APL) of [8] and
of the particle learning method of [2], we have obtained a new modified APL which
also includes parameter learning on Σ and converges to the correct filtering and pos-
terior distributions. The filter has not been applied to model (4)-(5), but to a relaxed
version to allow for parameter updating using conjugacy. In particular, an inverse-
Wishart initial distribution has been assigned to Σ0, that is, Σ ∼ iW (Σ0,ν0). Then,
given that Σ is independent from yt given α t , its posterior distribution, conditional
on the past history of the observations and of the states, is

Σ |st ∼ iW (Σ0 +
t

∑
r=1

(αr−αr−1)(αr−αr−1)
T ,ν0 + t) (6)
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where st = ∑
t
r=1(αr−αr−1)(αr−αr−1)

T . At time t+1 this distribution can then be
updated by knowing only the sufficient statistics st and (αt+1−αt), which, together,
give st+1. The covariance structure (5) is not discarded, but is used to provide the Σ0
parameter of the initial distribution of Σ , which, as experiments showed, must been
assigned carefully.

The derivation of our modified APL is not shown here, for reasons of space.
Instead we describe now the filtering algorithm, which provides, at each time t, a
discrete approximation of the filtering density as a set of support points with asso-
ciated weights. Additional yet undefined notation used for the algorithm, is L, the
likelihood function determined by the observation equation in model (4) and the
function f , which denotes a conditional density.

Given a step-t sample (αt ,st ,Σ)(i) and weights w(i)
t , the modified APL goes

through the following steps:

1. Resampling step: sample N index values ki, i = 1, . . . ,N, using weights propor-
tional to L(µ(k)

t+1;yt+1)w
(k)
t , putting µ

(k)
t+1 = α

(k)
t

2. Propagation step: sample N new particles α
(i)
t+1 from f (αt+1|α(ki)

t,ADJ ,Σ
(ki)) where

α
(ki)
t j,ADJ = log(yt+1, j/nt+1) if j ≤ rt+1, whereas α

(ki)
t j,ADJ = α

(ki)
t j if j > rt+1

3. Compute weights

w(i)
t+1 ∝

L(α(i)
t+1|yt+1) f (α(i)

t+1|α
ki
t ,θ (ki))

L(µ(i)
t+1|yt+1) f (α(i)

t+1|α
ki
t,ADJ ,θ

(ki))

update sufficient statistics s(i)t+1 = s(ki)
t +(α

(i)
t+1−α

(ki)
t )(α

(i)
t+1−α

(ki)
t )T and sample

Σ (i) ∼ iW (Σ0 + s(i)t+1,ν0 + t +1)

4 Data examples

Because of the abundance of training data, the prior can be pretty informative.
Therefore the initial distribution for Σ is iW ((R+ 1)Σ0,R+ d + 2), with large R.
With this parameterization, E(Σ) = Σ0 a priori. The initial Σ0 is computed using
η j = ∑t yt j/∑t nt from a training sample (such as another plant), then the filtered
claim rate for batches with rt observed claim epochs, rt < d, is estimated as

1
nt

(
rt

∑
j=1

yt j +
d

∑
j=rt+1

N

∑
i=1

w(i)
t ntλ

(i)
t j

)
.

For predictive interval forecasts we resample particles and draw

d

∑
j=rt+1

y(i)t j ∼ Poisson(nt

d

∑
j=rt+1

λ
(i)
t j )
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for every resampled particle. Then we take sample quantiles. The result of the fore-
casting procedure, including prediction intervals, is displayed in Figure 4, showing a
good performance even with very little information on the current production batch.
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Fig. 4: Forecasts of claims for the two example plants versus production batch. Solid line: complete
data; dashed line: forecast; dotted line: ratio between available number of claims and batch size at
the time of the forecast, representing the available information (the lower the less)
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5 Conclusions

The state-space Poisson-Lognormal model developed in this work has shown a good
potential for making early prediction of future claims from customers during the
warranty period of a domestic appliance, thanks to the design of an appropriate
covariance structure of within-batch failure rates and to parameter learning. This
approach is ideal for the sequential monitoring and prediction of claims when they
occur as counts in predefined monitoring intervals, without the need of any detailed
modelling of known disturbances such as claim reporting delays and of the usage
pattern of appliances. Experiments indicate that a good elicitation of the initial value
of the covariance matrix is requested, which is possible in the present situation be-
cause of the abundance of data, therefore future work can be directed to the ex-
ploration of results using a less concentrated initial distribution, as well as to other
parameter learning strategies that improve the convergence of the particle filter.
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