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Abstract A huge literature about clustering spatial time data exists. The problem
has been studied both in a parametric and in a nonparametric setting. There are sev-
eral problems in defining a proper clustering procedure, depending on the type of
relationship between the clusters. From a parametric point of view, a classic ap-
proach is to introduce mixture models and studying the posterior distribution of the
mixture weights. We propose a mixture model where the mixing probabilities are
time specific and are assumed to follow a Logistic-Normal distribution. We intro-
duce dependence between the vectors of mixing probabilities by means of a Gaus-
sian processes representation. We briefly propose a nonparametric extension of this
approach.
Abstract Esiste un’estesa letteratura riguardante problemi di clustering temporale
e spaziale. Il problema è stato studiato sia in ambito parametrico che nonpara-
metrico. I problemi principali delle procedure di clustering spazio-temporali dipen-
dono dal tipo di dipendenza tra i cluster stessi. Da un punto di vista parametrico,
l’approccio classico è quello di assumere un modello mistura e studiare la dis-
tribuzione a posteriori dei pesi della mistura. In questo articolo proponiamo an-
cora un modello mistura dove i pesi dipendono dal tempo e dove si assume che
seguano un modello logistico-normale. La dipendenza temporale tra i cluster è in-
trodotta attraverso una rappresentazione in base a processi gaussiani. Nell’articolo
proponiamo brevemente anche un’estensione nonparametrica dell’approccio.
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1 Introduction

There is more and more interest in spatial data, i.e. data where the response variable
is measured at spatial locations or data where the response variable is defined as a
set of spatial coordinates. This is due to the increased ability to store and collect this
type of data.

A central problem in the analysis of spatial data is spatial clustering, which
groups similar spatial objects into classes. Standard applications are the identifi-
cation of land areas for usage purposes in agricultural sciences or weather patterns
in environmental sciences. The goal of spatial clustering may be multiple, focus-
ing on the study of the characteristics of each cluster and on a better understanding
and description of the data and, ultimately, influencing policies in public health and
environment. Due to its huge usefulness in applied sciences, spatial clustering has
been a very active subject, with many contributions from different fields.

In this work, we will focus on the problem of modelling spatial coordinates (or
transformation of them) and, in particular, clustering them through time. Direct
applications of this may be seen in the modelling of wind directions [16], ocean
streams [8], identification of three-dimensional protein structures [12] and animal
movements [3].

The problem of clustering in this settings relates to the description of structural
changes in the time series. For instance, it is generally assumed that the animal
behaviour changes according to a natural cycle in the observational period, for ex-
ample the resting/feeding cycle, or to out-of-ordinary situations, such as the assault
of a predator or changement in human activities.

The joint distribution of the coordinates, or of an appropriate transformation of
them, can be seen as a mixture process where the mixture components are the dif-
ferent behaviours or regimes. It is generally assumed that the switching between
regimes is temporally structured [17], and sometime also spatially, as in [2], of-
ten ruled by a non-observed Markov process leading to the class of hidden Markov
models (HMMs) [25].

In this paper, we propose a mixture-type model, as the hidden Markov model,
but with a higher level of flexibility given by the assumption that the vector of prob-
abilities is marginally distributed as a Logistic-Normal model (LogitN) [1] and the
structured temporal dependence is induced via a coregionalization over a multivari-
ate Gaussian process [10]. This is not the first proposal where a structured depen-
dence is introduced over vectors LogitN distributed, however, as we will show, our
proposal is more general since it focuses on the dependence structure of the proba-
bilities vectors rather than that of the Gaussian process, as in [22] and [4].

The rest of the paper is organized as follows: Section 2 provides the notation
and gives some preliminaries, Section 3 describes the proposed method; Section 4
focuses on a real application on data of animal movement. Section 5 concludes the
paper.



Introducing spatio-temporal dependence in clustering 3

2 Notation and preliminaries

Suppose the data are indexed by temporal indices (t1, . . . , tT )′ ≡T , assuming that t1
is the starting observational time and tT the ending observational time, by allowing
that ti− ti−1 = ci which may vary depending on i.

Let, then, sti =(sti,1,sti,2)
′ ∈R2 be spatial location at time ti with s=(st1 , . . . ,stT )

′.
A standard transformation considered when analysing spatial coordinates is look-

ing at the projections of sti on the x- and y- axes of the cartesian coordinates system
centred on sti−1 , say rti = (rti,1,rti,2) ∈ R2 and then defining

yti =
rti

d(ti+1, ti)
.

The variable yti contains all the sufficient information to recover the trajectory
without loosing any significant property. In particular, the sign of yti,1 provides in-
formation about the fact that the movement is on the same direction of the previous
one, while the sign of yti,2 indicates if it turns to the right or to the left. Moreover,
||yti || represents the step-length and θti = atan2(yti,2,yti,1) the turning angle of the
movement, respectively.

A standard clustering methodology is to introduce information indicating the
cluster membership as a latent variable z = {zt}t∈T , with zt ∈ {1,2, . . . ,K} ≡K ,
and K the total number of clusters.

The data are assumed to come from a mixture-type model based on bivariate
Gaussian densities:

f (y|z{ξ k,Ω k}) = ∏
t∈T

f (yt |ξ zt
,Ω zt )

where
yt |ξ zt

,Ω zt ∼ N2(ξ zt
,Ω zt )

i.e. given the latent variables zt , the observations yt are independent. The hidden
Markov models (HMMs) [5] assume the latent variables follow the Markov rule

Pr(zti | zt1 , · · · ,zti−1) = Pr(zti | zti−1)

and, in particular,

zti |zti−1 ,{πk,k′}k,k′∈K ∼ ∑
k∈K

πzti−1 ,k
δk.

Although HMMs are widely used ans easy to implement, the Markov structure
may be too restrictive. For instance, the assumption that the probabilities of switch-
ing cluster is fixed and independent from time is difficult to accept in all the contexts.
In some works, see for example [19], [17], [13] and [11], problems like these are
tackled using covariates that model probabilities, but not always these are available
and may not be enough for describing the complexity of reality. [18] proposes a



4 Clara Grazian, Gianluca Mastrantonio and Enrico Bibbona

mixture model where the latent spatial process is allowed to evolve dynamically
over time.

We proposed to consider a more complex model where the mixing probabilities
follow a LogitN model; this has been proposed by [1] as a distribution for indepen-
dent compositional data, i.e. vectors of positive proportions with a constant sum.
Beyond the obvious fact that it can model data which are positive and less than a
constant, the constant-sum constraint induces some more insidious characteristics
which will be described in the next Section.

3 The model

We propose to introduce a dependence on time of the vector of probabilities, instead
of using a HMM

zt |π t ∼
K

∑
k=1

πt,kδk,

where 0≤ πt,k ≤ 1, ∑
K
k=1 πt,k = 1. The probability vector π t is then defined with the

logistic transformation of real valued variables

πt,k =
eωt,k

1+∑
K
j=1 eωt, j

, k = 1, . . . ,K (1)

with the last element defined as

πt,K =
1

1+∑
K−1
j=1 eωt, j

.

It has to be noticed that adding a constant c to each ωt,k produces the same vec-
tor of probabilities, and then an identifiability constraint is needed; without loss of
generality, we set to zero the Kth.

In this way, it is possible to model the latent variable ω t . In particular, we propose
to define it as

ω t = (IK−1⊗Xt)β +Aη t (2)

where Id is the identity matrix of dimension d×d, Xt is a set of p covariates chang-
ing over time and β the corresponding coefficients such that each ωt,k shares the
same set of covariates but different coefficient β . A is the term introducing depen-
dence among the vectors ω .,k = {ωt,k}t∈T , while η t is the error term such that it
is defined as a Gaussian process, i.e. η .k ∼ GP(0,Ck(·;ψk)) where Ck models the
structured dependence. Consequently, the covariance between ω t and ω t ′ is given
by Σ t,t ′ = ACη ,|t−t ′|A′.

We say that marginally the vector of probabilities π t follows a logit-normal
model [1], i.e. π t ∼ LogitN(µ t ,Σ), where µ t = (IK−1⊗Xt)β and Σ = AA′.
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The nature of a compositional vector, in particular its property to sum to a con-
stant term, implies a lack of interpretability since the correlations are not completely
free to vary in (−1,1). We propose a different parametrisation to deal with this prob-
lem.

Instead of modelling ω t , we propose to introduce another variable

γ t = (IK⊗Xt)β +A∗η t

in similar way than ω t , with the difference that all the K variables are defined,
i.e. IK is the identity matrix of dimension K×K, A is a K×K matrix introducing
dependence among the γ .,k = {γt,k}t∈T while η t is the error term such that η .k ∼
GP(0,C∗k (·;ψ∗k)). Then, γ t has covariance matrix given by

Σ
∗ = A∗(A∗)′.

Therefore, it is possible to define a different vector of probabilities with elements

π
∗
t,k =

exp(γt,k)

∑
K
j=1 exp(γt, j)

.

It is evident, however, that the model is not identifiable. Notice that π∗t follows a
marginal distribution different from π t , with a different temporal dependence.

However, if we let
ωt,k := γt,k− γt,K

we create a link between the two parametrizations that induces

A = [A∗]1:(K−1),1:K− [A∗]K,1:K ,

and, consequently,

[Σ ∗]1:(K−1),1:(K−1)+1K−1[Σ
∗]K,K1′K−1− [Σ ∗]1:(K−1),K1′K−1−1K−1[Σ

∗]′1:(K−1),K .

Given this link, it follows that πt,k = π∗t,k for any k = 1, · · · ,K and t = 1, · · · ,T ,
with the advantage to be able to define a covariance structure on the variables γ t
which induces the desired covariance structure on the corresponding π t .

There are several interesting issues to highlight at this point. First, our proposed
model given in (2) generalizes most of the models available in the literature where
transformations as in (1) are used to define probabilities vectors. For instance, the
proposal of [15] is obtained by assuming η t ≡ 0K−1. The model of [18] is obtained
letting η t be a spatio-temporal process with autoregressive temporal increments and
a diagonal A. We can also reduce to the proposals of [24], [14] and [21]. On the other
hand, models using the cokriging, such as the ones of [20], can not be expressed with
our formulation. However, one may notice that the complexity of our approach is
reduced with respect to the cokriging.

Secondly, computational issues often arise for models based on Gaussian pro-
cesses. We make use of the approach proposed by [7], i.e. a scalable nearest-



6 Clara Grazian, Gianluca Mastrantonio and Enrico Bibbona

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
Time Points

P
ro

ba
bi

lit
y

First
Second
Third

(a)

●

●
●

●

●

●

●

●

●
●●●●●●●●●

●●●●●●●●●●●
●●

●●

●●●●●

●●

●

●

●

●

●

●●●●●●

● ●●
●

●●●●●

●

●

●●●

●
●●

●

●●●●●
●●●●●●

●●●●●●●

●

●●

●

●●●●
●●●●●●

●

●
●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●●●●●
●

●●●●●●

●●●●●●

● ●
●

●

●

●

●

●

●

●
●●●●

●

●●●●●

● ●●●●●
●

●

●●

●

●
●

●●●●●

●
●●●●●●

●

●●
●

●
●●●

●●●
●

●

●

●

●
●●

● ●●●●●●●●
●●●

●●●

●
●

●●●
●

●●●●

●
●

●

●●●●●●●●●●

●

●● ●

●

●

●

●●●

●●●●●●●

●●●
●●●●

●

●

●

●●●

●

●●●
●

●
●

●●

●

● ●
●●●

●

●

●

●●●
●

●
●

●

●

●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●

●

●●

●

●

●

●

●●●●●
●

●●

●

●

●
●●●●●●

●●
●

●●●●●●●●
●●●

●

●

●●

●

●●●●●●●●●●●

●

●
●
●

●

●

●

●●●

●
●

●

●

●

●●

●

●●●●●●●●●●
●●

●

●
●

●

●●●●●●

●

●●

●

●

●
●

●

●●

●

●
●

●●

●

●●

●

●

●
●

●

●

●●

●
●

●●
●●●●●●●●●●●

●●●●●●●

−8

−4

0

4

−10 −5 0

(b)

0.0

0.1

0.2

0.3

0 2 4 6 8
Step−length

D
en

si
ty

(c)

0.000

0.001

0.002

0.003

0 2 4 6
Turning−angle

D
en

si
ty

(d)

Fig. 1: Real data: (a) probabilities time series; (b) observed trajectory; (c) posterior
estimates of step-length; (d) posterior estimates of turning-angle

neighbour Gaussian process (NNGP) which may be seen as a hierarchical sparse
prior and allows for efficient MCMC algorithms to be performed without storing or
decomposing large covariance matrices. While [7] empirically shows that 25 neigh-
bours are needed to obtain an approximation close to the complete model, the tem-
poral nature of the data analysed in this paper allow us to use just one neighbour,
with a even highest level of saving of computational time.

4 Real Data

Data on 6 free-ranging Maremma sheepdogs positions are recorded by tracking col-
lars every 30 minutes. The behaviour of the dogs is unknown because there is mini-
mal supervision by their owners and the animals are allowed to range freely.

We select a time series of 500 points of one dog and characterize the hidden
behaviours using the model proposed above; in Figure 1 (b) we show the observed
trajectories, i.e. the observed coordinates.

We estimate model with values of K in [2,3, . . . ,10] and, using DIC5 [6], we
select the best model as the one with three components. The three behaviours can
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be easily characterized looking at the distribution of step-length and turning-angle,
Figure 1 (b) and (c). In the first behaviour, the dog has low speed and the distribution
of the angle is almost circular uniform, i.e. it moves randomly. In the second one, the
speed increases and the direction has two modes with same height, one at π/2 and
one at 3π/2, meaning that it changes direction clockwise and anticlockwise with the
same probability. In the last one, the speed is high and it changes direction mainly
anticlockwise. From Figure 1 (a) we can see the temporal series of the probabilities
and we appreciate that behaviour one is the one that has more temporal stabilities,
i.e. it has high values for a long time-period. In Figure 1 (b) we see where the be-
haviours are spatially localized. The third one occurs in all spatial domain, while the
other two behaviours are on the top left (where the house of the owner is localized)
and the right part of the map (where there is the livestock).

5 Conclusion

In this work, we propose a model to perform clustering for spatial data, based on a
new parametrization of the logit-normal process, with parameters allowing an easier
interpretability.

However, the possibility to use this model derives from the knowledge of the
exact number of clusters. The nonparametric extension of a mixture model is the
Dirichlet process (DP) [9], a stochastic process defined over a measurable space
whose random paths are probability measures with probability one. The hierarchi-
cal Dirichlet process (HDP), proposed by [23], is an extension of the DP that makes
possible to have processes sharing the same set of atoms. In the original construction
of the HDP the random vectors π j. and πk. for any j 6= k are independent. The non-
parametric extension of the work proposed in this paper, which will be the subject of
further research, focuses on how to introduce dependence in hierarchical Dirichlet
processes.
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