
Modelling insurance losses via contaminated
unimodal distributions
Modellizzazione delle perdite assicurative tramite
distribuzioni contaminate unimodali

Salvatore Daniele Tomarchio and Antonio Punzo

Abstract Forecast the loss associated with a claim is crucial in insurance indus-
try. These types of payments are generally highly positively skewed and with heavy
tails, highlighting the necessity of flexible models. Contaminated models are a prof-
itable way to accommodate situations in which some of the probability masses are
shifted to the tails of the distribution, and in this work a general approach to con-
taminate unimodal hump-shaped distributions defined on a positive support is intro-
duced. The proposed models are hence fitted to a real insurance loss dataset, along
with several standard distributions used in the actuarial literature. Comparison be-
tween the models is made using information criteria and riskmeasures such as VaR
and TVaR.
Abstract Prevedere la perdita associata alle richieste di risarcimento, è fonda-
mentale in campo assicurativo. Questo tipo di pagamenti sono, in genere, posi-
tivamente asimmetrici e a code pesanti, evidenziando quindi il bisogno di avere
modelli flessibili. I modelli contaminati sono uno stumentoutile per gestire situa-
zioni nelle quali si hanno masse di probabilità spostate sulle code, ed in questo
lavoro viene introdotto un approccio generale per contaminare distribuzioni uni-
modali definite su supporto positivo. I modelli proposti sono quindi testati su un
dataset reale riguardante perdite assicurative, insieme adiverse altre distribuzioni
standard usate in letteratura. I confronti tra i modelli sono fatti usando dei criteri
informativi e due misure di rischio come il VaR ed il TVaR.
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1 Introduction

It is crucial, in insurance business, to find adequate modelsfor loss data in order
to correctly compute premiums, risk measures and the required reserves. Unfortu-
nately, this is not an easy task because of the distinctive characteristics of their distri-
bution. As widely documented, the loss distribution is unimodal hump-shaped [4],
highly positively skewed [11], and with heavy tails [1]. Some authors argued that
observed losses can be described by a single probability distribution [6, 7, 10, 12].
However, some of these distributions are defined on the wholereal line, causing the
so-called boundary bias problem [8], while others fail to cover the behaviour of ei-
ther small or high losses [9]. In particular, the losses in the upper tail, though rare in
frequency, are the ones that have the most impact on the financial stability of insur-
ance companies. Considering this, in Section 2 we propose a contaminated approach
that allows to account for all the peculiarities of the loss data discussed above, with
particular reference to the tails behaviour of the distribution. In detail, a 2-parameter
unimodal hump-shaped model, reparameterized with respectto the modeλ and to
another parameterν that is strictly related to the distribution variability, is chosen
as “core distribution”. An analogous distribution, in which ν is multiplied by an-
other parameterη > 1, is chosen as “contaminant distribution”. The mix of these
two distributions generates a 4-parameter contaminated model being unimodal in
λ and giving more flexibility to the tails with respect to the core distribution. Fur-
thermore, the proposed models allow for automatic detection of ‘bad’ losses via a
simple procedure based on maximuma posterioriprobabilities. According to our
approach, and in the fashion of Aitkin and Wilson [2], bad losses are defined with
respect to the core distribution as points producing an overall distribution (i.e. the
contaminated distribution) that is too heavy-tailed in order to be modeled by the
core distribution only. In other words, endowed with heavy tails our model offers
the flexibility needed for achieving bad losses robustness,whereas the core distri-
bution lacks sufficient fit. Two examples of contaminated models are examined in
Section 2, and then fitted to a real insurance loss dataset, along with other well-
known parametric distributions, in Section 3. Comparisonsbetween the models are
made using information criteria and risk measures, while some conclusions, as well
as future possible extensions, are drawn in Section 4.

2 Contaminated models: A general framework and two specific
applications

Let X be a positive random variable. Requiring that the probability density function
(pdf) p(x) of X should be unimodal hump-shaped and positively skewed, a general
(4-parameter) contaminated unimodal pdf for losses could be

p(x;ϑ) = α f (x;λ ,ν)+(1−α) f (x;λ ,ην) , x> 0, (1)
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whereϑ = (λ ,ν ,η ,α)′. In (1), f (x;λ ,ν) and f (x;λ ,ην) are the unimodals hump-
shaped densities selected as core and contaminant distributions, respectively.λ > 0
is the mode,ν > 0 is a parameter that manage the concentration off around the
mode,η > 1 indicates the degree of contamination, and can be interpreted as the
increase in variability due to the excessively small or large losses with respect to the
core distribution, whereasα ∈ (0,1)is the weight applied to the core distribution.
It should be noted that, because both distributions have their maximum inλ , even
the resulting contaminated modelp(x) will have modeλ . Among all the existing
2-parameter distributions that can be used forf , unimodal gamma and log-normal
will be considered.

Let f (x;α,β ) be the pdf of a gamma distribution with the standard parameteri-
zation, i.e. whereα > 0 andβ > 0 are the shape and scale parameters, respectively.
In order to have a core distribution for losses that can be inserted in model (1), a
reparameterization is needed. Setting

{
α =

λ
ν
+1

β = ν
⇒

{
λ = β (α −1)
ν = β , (2)

we obtain

f (x;λ ,ν) =
x

λ
ν e−

x
ν

ν
λ
ν +1Γ

(
λ
ν +1

) , x> 0, (3)

with λ > 0 andν > 0. More details about this type of parameterization can be found
in [8] and [3]. Ultimately, it should be clarified that only the subset of unimodals
gamma densities is considered, neglecting all the unlimited reverse J-shaped ones
that have a vertical asymptote inx= 0.

Let f (x; µ ,σ) be the pdf of a log-normal distribution with the standard parame-
terization whereµ ∈ andσ > 0. With the purpose of having a core distribution for
losses that can be inserted in model (1), also in this case, a reparameterization is
needed. Imposing

{
µ = lnλ +ν

σ2 = ν ⇒

{
λ = eµ−σ2

ν = σ2 , (4)

the pdf becomes

f (x;λ ,ν) =
e−

(lnx−lnλ−ν)2
2ν

√
2πνx

, x> 0, (5)

with λ > 0 andν > 0.
An interesting characteristic of model (1) is that, onceϑ is estimated, saŷϑ , it

is possible to determine whether a generic loss, sayx∗, is good via thea posteriori
probability

P
(

x∗ is good
∣∣∣ϑ̂

)
=

α̂ f
(

x∗; λ̂ , ν̂
)

p
(

x∗; ϑ̂
) . (6)
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Specifically,x∗ will be considered good ifP
(

x∗ is good
∣∣∣ϑ̂

)
> 1/2, while it will be

considered bad otherwise.

3 Application to insurance loss dataset

The dataset consists of 2,387 French business interruptionlosses over the period
1985 to 2000. For each observation, total cost (that includes the additional expenses
associated with settlement of the claim) in French francs (FF) is considered. Com-
parisons between distributions are presented in Table 1. AIC and BIC indicate that

Model k Log-lik. AIC Rank BIC Rank LR test

Cont.gamma4 -19,983.29-39,974.58 3 -39,997.69 3 0.000
Cont.log-normal4 -19,842.98-39,693.97 1 -39,717.08 1 0.000

Exponential1 -20,563.23-41,128.46 6 -41,134.23 6
Gamma (unimodal)2 -20,563.23-41,130.46 7 -41,142.01 7

Log-normal2 -19,893.29-39,790.59 2 -39,802.14 2
Weibull 2 -20,254.73-40,513.47 5 -40,525.02 5
Normal 2 -24,127.48-48,258.95 12 -48,270.51 12
Cauchy2 -20,769.81-41,543.62 8 -41,555.17 8
Logistic 2 -22,261.65-44,527.29 10 -44,538.85 10

Skew-logistic3 -21,720.53-43,447.07 9 -43,464.40 9
Skew-normal3 -22,592.65-45,191.31 11 -45,208.64 11

Skew-t 4 -20,039.17-40,086.33 4 -40,109.44 4

Table 1 French business interruption losses: log-likelihood, AIC, and BIC for the competing mod-
els, along with rankings. In the last column,p-values from the LR tests.

the cont.log-normal model is the best one, while the cont.gamma is ranked third.
They further provide an improvement compared to their core distributions, as con-
firmed by the nullp-values of the LR test. Table 2 reports the empirical and the
estimated VaR and TVaR of the fitted models, at confidence levels of 95% and 99%.
The ranking here is based on the absolute value of the percentage of variation with
respect to the empirical risk measure considered; the loweris the difference the bet-
ter is the position in the ranking. A backtesting procedure is also applied to test
when models provide reasonable estimates of the VaR. Analysing the VaR, at the
95% confidence level the cont.log-normal is again the best model, and it seems to
be the only able to reproduce the empirical VaR, with ap-value very close to 1.
At the 99% confidence level, the best model is the cont.gamma instead. Ifp-values
are checked, both contaminated models seem able to reproduce the empirical VaR.
Considering now the TVaR, at both confidence level the cont.log-normal is the best
model, while the cont.gamma is the second best. Nevertheless, only the cont.log-
normal assumes a very good value, considering that all the others are even further
away from the true value than the preceding case.
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Model VaR Prop. Viol. p-value TVaR
95% Rank 99% Rank 95% 99% 95% 99% 95% Rank 99% Rank

Empirical 7,675.81 18,293.88 17,062.59 38,135.05

Cont.gamma 9,454.65 6 18,931.39 1 0.036 0.009 0.001 0.547 15,341.69 2 24,789.96 2
Cont.log-normal 7,787.84 1 21,810.33 5 0.049 0.006 0.899 0.050 17,872.90 1 40,499.24 1

Exponential 6,074.55 4 9,338.07 9 0.071 0.037 0.000 0.000 8,100.34 9 11,365.48 9
Gamma (unimodal) 6,074.52 5 9,338.02 10 0.071 0.037 0.000 0.000 8,102.25 8 11,365.75 8

Log-normal 6,189.57 3 14,304.85 6 0.067 0.017 0.000 0.001 11,822.42 5 23,777.22 4
Weibull 6,893.35 2 12,358.04 8 0.062 0.023 0.012 0.000 10,366.06 7 16,282.58 7
Normal 11,792.92 10 15,838.83 3 0.026 0.013 0.000 0.161 14,303.56 4 17,865.08 6
Cauchy 3,429.48 11 14,992.23 4 0.132 0.017 0.000 0.002 186,392.18 12 906,557.85 12
Logistic 5,097.50 8 7,257.37 11 0.082 0.059 0.000 0.000 6,439.81 10 8,570.36 10

Skew-Logistic 4,930.70 9 7,093.86 12 0.084 0.059 0.000 0.000 6,264.82 11 8,391.85 11
Skew-Normal12,385.83 12 16,246.27 2 0.023 0.012 0.000 0.307 14,752.98 3 18,233.47 5

Skew-t 5,809.08 7 12,804.28 7 0.074 0.022 0.000 0.000 11,261.57 6 24,290.48 3

Table 2 French business interruption losses: VaR, with its backtest, and TVaR at confidence levels
of 95% and 99%.

Finally, to show how formula (6) works, the largest ten losses are considered in
Table 3 and Table 4. As stated in Section 1, these losses couldbe considered like
outliers that contaminate the core distribution, implyinga heavier right tail than ex-
pected. Therefore, in a contaminated model, they should belong to the contaminant
distribution, and treated like bad losses if such an outcomeis desired [5].

Loss value (x∗) Probability that (x∗) is good

27,440.82 0.001245
31,567.43 0.000329
32,450.93 0.000247
44,088.55 0.000006
45,500.31 0.000004
46,827.85 0.000002
50,155.73 0.000001
53,357.16 0.000000

152,449.02 0.000000
168,654.35 0.000000

Table 3 French business interruption
losses:a posterioriprobability to be a good
observation for the largest 10 losses based
on the contaminated gamma.

Loss value (x∗) Probability that (x∗) is good

27,440.82 0.218933
31,567.43 0.199455
32,450.93 0.195780
44,088.55 0.158422
45,500.31 0.154925
46,827.85 0.151789
50,155.73 0.144506
53,357.16 0.138185

152,449.02 0.060963
168,654.35 0.056014

Table 4 French business interruption
losses:a posterioriprobability to be a good
observation for the largest 10 losses based
on the contaminated log-normal.

4 Conclusions

In this paper, a general contaminated model has been introduced by mixing a core
distribution with a contaminant one. By using a contamination approach, as pro-
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posed here, both small and large observations can be accommodated and hence re-
liable statistical inference is possible also for heavy-tailed loss distributions. The
main finding is that both models behave very well compared to the 12 benchmark
distributions considered, both in terms of goodness of fit and in the computation of
risk measures. A logical extension of this work would be to allow also for other 2-
parameter unimodal hump-shaped distributions (defined on apositive support) to be
used as core and contaminant distributions and to apply these models to a variety of
other insurance loss datasets. In the fashion of Punzo and McNicholas [13], define
mixtures of our contaminated unimodal models to be used as a powerful devise for
robust clustering and density estimation of positive data.
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