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Modellizzazione delle perdite assicurative tramite
distribuzioni contaminate unimodali
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Abstract Forecast the loss associated with a claim is crucial in arsee indus-
try. These types of payments are generally highly positiskewed and with heavy
tails, highlighting the necessity of flexible models. Cantaated models are a prof-
itable way to accommodate situations in which some of théatdity masses are
shifted to the tails of the distribution, and in this work angeal approach to con-
taminate unimodal hump-shaped distributions defined orsdip®support is intro-
duced. The proposed models are hence fitted to a real in®uless dataset, along
with several standard distributions used in the actuait@dture. Comparison be-
tween the models is made using information criteria andmislsures such as VaR
and TVaR.

Abstract Prevedere la perdita associata alle richieste di risarcitteg & fonda-
mentale in campo assicurativo. Questo tipo di pagamentosongenere, posi-
tivamente asimmetrici e a code pesanti, evidenziando qulildsogno di avere
modelli flessibili. | modelli contaminati sono uno stumeatite per gestire situa-
zioni nelle quali si hanno masse di probaklilispostate sulle code, ed in questo
lavoro viene introdotto un approccio generale per contaangndistribuzioni uni-
modali definite su supporto positivo. | modelli proposti eaquindi testati su un
dataset reale riguardante perdite assicurative, insientivarse altre distribuzioni
standard usate in letteratura. | confronti tra i modelli sofatti usando dei criteri
informativi e due misure di rischio come il VaR ed il TVaR.
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1 Introduction

It is crucial, in insurance business, to find adequate mddelkss data in order
to correctly compute premiums, risk measures and the redjué@serves. Unfortu-
nately, this is not an easy task because of the distinctiaeacieristics of their distri-
bution. As widely documented, the loss distribution is uadtal hump-shaped [4],
highly positively skewed [11], and with heavy tails [1]. Serauthors argued that
observed losses can be described by a single probabilitybdison [6, 7, 10, 12].
However, some of these distributions are defined on the wialdine, causing the
so-called boundary bias problem [8], while others fail tverthe behaviour of ei-
ther small or high losses [9]. In particular, the losses euhper tail, though rare in
frequency, are the ones that have the most impact on the iaatability of insur-
ance companies. Considering this, in Section 2 we proposgetaminated approach
that allows to account for all the peculiarities of the loasaddiscussed above, with
particular reference to the tails behaviour of the distidhu In detail, a 2-parameter
unimodal hump-shaped model, reparameterized with re$pelce modet and to
another parameter that is strictly related to the distribution variabilits chosen
as “core distribution”. An analogous distribution, in whie is multiplied by an-
other parameten > 1, is chosen as “contaminant distribution”. The mix of these
two distributions generates a 4-parameter contaminatedehteing unimodal in
A and giving more flexibility to the tails with respect to theredalistribution. Fur-
thermore, the proposed models allow for automatic deteafdbad’ losses via a
simple procedure based on maximanposterioriprobabilities. According to our
approach, and in the fashion of Aitkin and Wilson [2], badksks are defined with
respect to the core distribution as points producing anadlvdistribution (i.e. the
contaminated distribution) that is too heavy-tailed inesrtb be modeled by the
core distribution only. In other words, endowed with heaaistour model offers
the flexibility needed for achieving bad losses robustnaebgreas the core distri-
bution lacks sufficient fit. Two examples of contaminated eisdire examined in
Section 2, and then fitted to a real insurance loss datasely alith other well-
known parametric distributions, in Section 3. Comparidogisveen the models are
made using information criteria and risk measures, whifeesoonclusions, as well
as future possible extensions, are drawn in Section 4.

2 Contaminated models: A general framework and two specific
applications

Let X be a positive random variable. Requiring that the probghdiensity function
(pdf) p(x) of X should be unimodal hump-shaped and positively skewed, ergen
(4-parameter) contaminated unimodal pdf for losses coald b

px;d)=af(xA,v)+(Q—-a)f(x;A,nv), x>0, (1)
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whered = (A,v,n,a)’. In (1), f (x;A,v)andf (x;A,nv) are the unimodals hump-
shaped densities selected as core and contaminant distnigurespectivelyA > 0

is the modey > 0 is a parameter that manage the concentratioh afound the
mode,n > 1 indicates the degree of contamination, and can be intexgpbies the
increase in variability due to the excessively small orddagses with respect to the
core distribution, whereas < (0,1)is the weight applied to the core distribution.
It should be noted that, because both distributions have itieximum inA, even
the resulting contaminated mode(x) will have modeA. Among all the existing
2-parameter distributions that can be usedffounimodal gamma and log-normal
will be considered.

Let f (x;a,B) be the pdf of a gamma distribution with the standard pararirete
zation, i.e. wherex > 0 andf > 0 are the shape and scale parameters, respectively.
In order to have a core distribution for losses that can beriad in model (1), a
reparameterization is needed. Setting

A
a="+1 A=B(a-1)
{B—J N {V=B ’ @
we obtain L
f(xA,v)= Xve v x>0, 3

A b
veHr ( Ay 1)
with A > 0 andv > 0. More details about this type of parameterization can bado
in [8] and [3]. Ultimately, it should be clarified that onlydtsubset of unimodals
gamma densities is considered, neglecting all the unlaniégerse J-shaped ones
that have a vertical asymptotexn= 0.

Let f (x; u,0) be the pdf of a log-normal distribution with the standardapae-
terization whereu € ando > 0. With the purpose of having a core distribution for
losses that can be inserted in model (1), also in this casgparameterization is
needed. Imposing

=InA+v A = 07
{&2) - {hze @
the pdf becomes
(Inx—InA—v)2
fxa =2 xso0 5)
Y V2mvx ’

with A > 0 andv > 0. R

An interesting characteristic of model (1) is that, odtés estimated, say, it
is possible to determine whether a generic loss xais good via thea posteriori
probability

af (x*;x,ﬁ)

(<9

P (x* is good‘ﬁ) = (6)
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Specifically,x* will be considered good P (x* is good‘5> > 1/2, while it will be
considered bad otherwise.

3 Application to insurance loss dataset

The dataset consists of 2,387 French business interrufutgses over the period
1985 to 2000. For each observation, total cost (that inctide additional expenses
associated with settlement of the claim) in French fran€9 (& considered. Com-
parisons between distributions are presented in Table @.ahid BIC indicate that

Model|k| Log-lik.| AIC|RanK BIC|RanKLR test

Cont.gamme@4|-19,983.29-39,974.5§ 3[-39,997.64 3| 0.000

Cont.log—normﬁ‘l -19,842.98-39,693.97 1]-39,717.08 1| 0.000
Exponential1|-20,563.23-41,128.4 6(-41,134.23 6
Gamma (unimodalR|-20,563.23-41,130.44 7(-41,142.01 7
Log-normal2|-19,893.29-39,790.54 2(-39,802.14 2
Weibull|2{-20,254.73-40,513.417 5(-40,525.0% 5
Normal|2|-24,127.48-48,258.9% 12|-48,270.51 12
Cauchy2|-20,769.81-41,543.61 8|-41,555.117 8
Logistic|2|-22,261.65%-44,527.29 10|-44,538.8%5 10
Skew-logisti¢3|-21,720.53-43,447.01 9(-43,464.4 9
Skew-normal3|-22,592.65%-45,191.31 11(-45,208.64 11
Skewt [4]-20,039.17-40,086.33 41-40,109.44 4

Table 1 French business interruption losses: log-likelihood, AIC, at@fBr the competing mod-
els, along with rankings. In the last colunmyalues from the LR tests.

the cont.log-normal model is the best one, while the conirga is ranked third.
They further provide an improvement compared to their cagidutions, as con-
firmed by the nullp-values of the LR test. Table 2 reports the empirical and the
estimated VaR and TVaR of the fitted models, at confidencéd@f®5% and 99%.
The ranking here is based on the absolute value of the pageiof variation with
respect to the empirical risk measure considered; the l@the difference the bet-
ter is the position in the ranking. A backtesting procedgralso applied to test
when models provide reasonable estimates of the VaR. Ainglyse VaR, at the
95% confidence level the cont.log-normal is again the beste@nd it seems to
be the only able to reproduce the empirical VaR, witp-@alue very close to 1.
At the 99% confidence level, the best model is the cont.gamstaad. Ifp-values
are checked, both contaminated models seem able to regrtioiempirical VaR.
Considering now the TVaR, at both confidence level the caogrormal is the best
model, while the cont.gamma is the second best. Neverthededy the cont.log-
normal assumes a very good value, considering that all ther®tare even further
away from the true value than the preceding case.
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Model VaR Prop. Viol.| p-value TVaR

95%| RanK 99% Rank 95%| 99%| 95%| 99% 95%|Rank 99%]|Rank

Empirical| 7,675.81  |18,293.88 | \ \ \ | 17,062.59 | 38,135.0%
Cont.gamma 9,454.6! 6/18,931.3! 1/0.0360.0090.001/0.547] 15,341.6 2| 24,789.9 2
Cont.log-norma|l 7,787.8 1/21,810.3 5/0.0490.0060.8990.050 17,872.9 1| 40,499.2 1
Exponentia) 6,074.5 4| 9,338.0 9/0.071/0.0370.0000.000 8,100.3 9| 11,365.4 9
Gamma (unimodal) 6,074.5 5| 9,338.02 10/0.0710.0370.0000.000 8,102.2 8| 11,365.7 8
Log-normal 6,189.5 3]14,304.8! 6/0.0670.0170.0000.001 11,822.4 5| 23,777.2 4
Weibull| 6,893.3 2|12,358.0: 8/0.0620.0230.0120.000 10,366.0 7| 16,282.5 7
Normall11,792.92 10|15,838.8 3/0.0260.0130.0000.161 14,303.5 4| 17,865.0 6

Cauchy 3,429.48 11]14,992.2 4/0.1320.017/0.0000.002186,392.18 12/906,557.8% 12
Logistic| 5,097.5 8| 7,257.37 11/0.0820.0590.0000.000 6,439.81 10/ 8,570.36 10
Skew-Logistig 4,930.7 9| 7,093.86 12/0.0840.0590.0000.000 6,264.82 11| 8,391.85 11
Skew-NormaJ12,385.83 12/16,246.2 2|0.0230.0120.0000.307 14,752.9 3| 18,233.4 5
Skewt| 5,809.0 7|12,804.2 7|0.0740.0220.0000.000 11,261.5 6| 24,290.4: 3

Table 2 French business interruption losses: VaR, with its backtest, ¥aR &t confidence levels
of 95% and 99%.

Finally, to show how formula (6) works, the largest ten Iesage considered in
Table 3 and Table 4. As stated in Section 1, these losses beutdnsidered like
outliers that contaminate the core distribution, implyabeavier right tail than ex-
pected. Therefore, in a contaminated model, they shoutthbetb the contaminant
distribution, and treated like bad losses if such an outcisrdesired [5].

Loss value X¥) | Probability that x*) is good Loss value X*) | Probability that x*) is good
27,440.8 0.001245 27,440.8 0.218933
31,567.4 0.000329 31,567.4 0.199455
32,450.9 0.000247 32,450.9 0.195780
44,088.5 0.000006 44,088.5 0.158422
45,500.3 0.000004 45,500.3 0.154925
46,827.8 0.000002 46,827.8 0.151789
50,155.7 0.000001 50,155.7 0.144506
53,357.1 0.000000 53,357.1 0.138185

152,449.0 0.000000 152,449.0 0.060963
168,654.3 0.000000 168,654.3 0.056014

Table 3 French business interruption Table 4 French business interruption

lossesa posterioriprobability to be a good lossesa posterioriprobability to be a good

observation for the largest 10 losses based observation for the largest 10 losses based
on the contaminated gamma. on the contaminated log-normal.

4 Conclusions

In this paper, a general contaminated model has been irteodoy mixing a core
distribution with a contaminant one. By using a contamorathpproach, as pro-
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posed here, both small and large observations can be acatetedoand hence re-
liable statistical inference is possible also for heavlethloss distributions. The
main finding is that both models behave very well comparedé¢ol? benchmark
distributions considered, both in terms of goodness of fitiarthe computation of
risk measures. A logical extension of this work would be tovalalso for other 2-
parameter unimodal hump-shaped distributions (definedpmsiive support) to be
used as core and contaminant distributions and to applg tineslels to a variety of
other insurance loss datasets. In the fashion of Punzo amdidialas [13], define
mixtures of our contaminated unimodal models to be used asvanful devise for
robust clustering and density estimation of positive data.
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