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Abstract Multiple Imputation is a flexible tool to handle missing data that has been
increasingly used in recent years. One of the conditions for its validity is that the
two models used for (i) imputing and (ii) analysing the data need to be compati-
ble. For example, when the partially observed data have a multilevel structure, both
models need to reflect this. Choosing an appropriate imputation model is more com-
plicated when data are missing in a variable included in the substantive multilevel
analysis model as a covariate with a random slope, an interaction or a non-linear
term. We propose an imputation method based on joint modelling of the partially
observed variables. We factor this joint model in two parts: a joint multilevel distri-
bution for the covariates, and a conditional multilevel distribution for the outcome
given the covariates. We guarantee compatibility by using as the second term the
substantive analysis model. We fit this model with a Gibbs sampler, and we use a
Metropolis-Hastings step to accept/reject the proposed draws for the missing val-
ues, to guarantee that they are actual random draws from the desired distribution.
Our proposed imputation approach is theoretically consistent with the substantive
model, and we demonstrate the marked improvements this brings by simulation.
Abstract L’imputazione multipla é uno strumento flessibile per gestire dati man-
canti la cui popolarità è aumentata considerevolmente negli ultimi anni. Una delle
condizioni necessarie per la sua validità è che i due modelli utilizzati per (i) im-
putare e (ii) analizzare i dati siano compatibili. Per esempio, quando il dataset
parzialmente osservato ha una struttura multilivello, entrambi i modelli devono ten-
erne conto. Scegliere un modello di imputazione adeguato è più complicato quando
i dati sono mancanti in una variabile che è inclusa nel modello d’analisi multiliv-
ello di interesse come una covariata con una pendenza casuale, un’interazione o un
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termine non-lineare. Proponiamo qui un metodo di imputazione basato sulla mod-
ellizzazione congiunta delle variabili parzialmente osservate. Fattorizziamo questo
modello congiunto in due parti: una distribuzione congiunta per le covariate ed una
distribuzione condizionata per la variabile risposta date le covariate. Garantiamo
la compatibilità usando per questo secondo termine la stessa formulazione del mod-
ello d’analisi di interesse. Fittiamo questo modello con un campionatore di Gibbs,
ed utilizziamo un passo Metropolis-Hastings per accettare/rifiutare i valori pro-
posti per i dati mancanti, per garantire che siano effettive estrazioni casuali dalla
distribuzione desiderata. Mostriamo con simulazioni che questo metodo performa
in modo appropriato e supera una strategia di imputazione alternativa.

Key words: Missing Data, Multiple Imputation, Multilevel Model, Random Slope,
Interactions, Non-linearities

1 Introduction

Multiple imputation (MI) is a missing data handling method that has become very
popular in recent years, particularly in the world of medical and social research. Key
reasons for its growing popularity include its flexibility, the possibility to use for the
analysis step the same model of substantive scientific interest that we would have
used on a fully observed dataset and the chance to make use of auxiliary variables
to retrieve some information [8, 3].

A key role in MI is played by the imputation model, i.e. the model that is used to
impute the missing data. In order for MI to lead to valid inference, this needs to be
consistent with the substantive analysis model [2]. For example, if the partially ob-
served dataset has a multilevel structure, this needs to be reflected in the imputation
model as well as in the analysis model [6].

Different methods have been proposed recently for multilevel MI [1]. The most
flexible of these is Joint Modelling Multiple Imputation (JM-MI), which consists in
assuming a joint multivariate normal model for the partially observed data, and in
fitting this model with a Bayesian (e.g. Gibbs) sampler to impute the missing data. A
multilevel version of JM-MI was first introduced in [9], and later extended to allow
for binary and categorical data [5] and for cluster-specific covariance matrices [10].
However, in some circumstances it is not possible to find a simple joint imputation
model that is fully compatible with the analysis model; some examples include the
imputation of variables that are included in the substantive analysis model as co-
variates with a random slope, an interaction or a non-linear (e.g. quadratic) term.
Using a heteroscedastic imputation model can be useful to deal with random slopes
and interactions, as it allows for cluster-specific associations between variables [7].
However, full compatibility is still not guaranteed.

Goldstein et al. (2014) proposed a fully bayesian approach that broadly consists
in factoring the joint distribution in two terms: a joint model for the covariates of the
analysis model and a conditional model for the outcome given the covariates, that
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usually corresponds with the substantive analysis model. Although it was proposed
as a fully bayesian method, it can be used as a multiple imputation approach com-
patible with the substantive model. The advantage of this is that it allows auxiliary
variables to be included.

The aim of this paper is to introduce substantive model compatible JM-MI, and
to compare it with standard JM-MI, when the substantive analysis model includes a
random slope, an interaction or a quadratic term. We illustrate the advantage of the
newly proposed method by simulations.

2 Methods

Assume we have a partially observed dataset with individuals i nested in clusters j.
We intended to collect data on three continuous variables Y , X1 and X2, but we end
up with some missing data in each of the three variables. The substantive analysis
model of scientific interest is a linear mixed model:

yi, j = (β0 +u0, j)+(β1 +u1, j)x1,i, j +β2x2,i, j + εi, j(
u0, j

u1, j

)
∼ N(0,Σ u) εi, j ∼ N(0,σ2

e ) (1)

In order to deal with missing data, we can use JM-MI. But what imputation model
should we use?

2.1 JM-Hom: Homoscedastic Joint Modelling Imputation

One possibility is to assume a 3-variate normal joint model for the three variables:


yi, j = α0 + v0, j + e0,i, j

x1,i, j = α1 + v1, j + e1,i, j

x2,i, j = α2 + v2, j + e2,i, jv0, j
v1, j
v2, j

∼ N(0,Ω u)

e0,i, j
e1,i, j
e2,i, j

∼ N(0,Ω e) (2)

This model can be easily fitted with a standard Gibbs sampler, creating K dif-
ferent imputed datasets. These are then analysed with (1) to obtain K copies of the
parameter estimates that are finally combined with Rubin’s rules.

This approach naturally extends to include binary or categorical variables. This
is achieved by means of a latent normal variables approach, as outlined in [5].
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2.2 JM-Het: Heteroscedastic Joint Modelling Imputation

Because of the presence of a random slope, Model (1) is not compatible with Model
(2), i.e. the conditional distribution of Y given X1 and X2 derived from (2) is not (1).
To overcome this issue, one possibility is to assume instead an heteroscedastic im-
putation model, similar to (2) but with random cluster-specific covariance matrices
following an inverse Wishart distribution:

Ωe, j ∼ IW (a,A) (3)

This model makes an attempt at modelling cluster-specific associations between
variables, by assuming cluster-specific covariance matrices at level 1. However, it is
still not a fully compatible approach.

It can be fitted with a similar Gibbs sampler to the one used for model (2).

2.3 JM-SMC: Substantive Model Compatible Joint Modelling
Imputation

In order to define an imputation model fully compatible with (1), following along the
lines of [4], we can factorise the joint distribution of the three variables in two terms:
(i) a joint model for the two covariates and (ii) a conditional model for the outcome
given the covariates. This way, we can make sure that the conditional model for the
outcome corresponds to (1):

{
x1,i, j = α1 + v1, j + e1,i, j

x2,i, j = α2 + v2, j + e2,i, j(
v1, j
v2, j

)
∼ N(0,Ω u)

(
e1,i, j
e2,i, j

)
∼ N(0,Ω e) (4)

yi, j = (β0 +u0, j)+(β1 +u1, j)x1,i, j +β2x2,i, j + εi, j(
u0, j

u1, j

)
∼ N(0,Σ u) εi, j ∼ N(0,σ2

e )

In order to impute from this model, an additional Metropolis-Hastings step within
the Gibbs sampler is needed to impute the missing X1 and X2 values: imputations
are drawn from a proposal distribution and accepted or rejected depending on the
value of the Metropolis ratio. If using a symmetrical proposal distribution, this is
simply the ratio of the likelihood of the model with the new proposed imputed value
over the likelihood of the model with the previous imputed value.

This method naturally extends to allow for interactions or non-linearities in the
conditional model for the outcome given the covariates in (4). Hence, it is possible
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to impute compatibly with the analysis model at the only cost of having to know the
functional form of the substantive model in advance.

2.4 Software

We fit and impute from all three models (2), (3) and (4) using functions jomo and
jomo.smc from our R package jomo, freely available on CRAN. The substantive
model (1) is fitted with the R package lme4, and the results are combined with
Rubin’s rules as implemented in the mitml package.

3 Simulations

To illustrate the improvements that random coefficient compatible multiple impu-
tation brings, in a base-case scenario we generate 1000 multilevel datasets, each
constituted of 6000 observations, equally divided in 60 clusters, on three variables
Y , X1 and X2. X1 and a latent normal Z are generated from a bivariate normal dis-
tribution. X2 is then created as a binary variable that takes the value 1 when Z > 0.
The data-generating mechanism for the outcome is the following:

yi, j = (0.5+u0, j)+(1+u1, j)x1,i, j −0.3x2,i, j + εi, j(
u0, j

u1, j

)
∼ N

(
0,
(

1 0
0 1

))
εi, j ∼ N(0,1)

We assume that the desired analysis model is (1). We fit this model on the fully
observed data (FD) and store all the parameter estimates. Then, for the fixed effect
parameters β0, β1 and β2 we calculate the mean, the empirical and model based
standard errors and the coverage level across 1000 simulations. We additionally
report the mean of the three variance components: the random intercept variance
σ2

u0, the random slope variance σ2
u1 and the residual variance σ2

e .
We then make around 35% of the data on X1 and X2 missing at random con-

ditional on the outcome Y , and we re-analyse the data using the complete records
(CR). Finally, we handle missing data with the three different MI strategies pre-
sented in the previous section.

We investigate four additional scenarios:

• A scenario where X2 is 3-level categorical;
• One with an additional continuous variable X3, highly correlated with X1, but not

included either in the data generating process for Y or in the substantive analysis
model (i.e. an auxiliary variable);

• One where Y is generated from a model with a quadratic effect on X1;
• One where there is an interaction between X1 and X2.



6 Matteo Quartagno and James R. Carpenter

3.1 Results

Table 1 shows the base-case simulation results. While Complete Records (CR) esti-
mates are strongly biased, because of the dependence of the missingness mechanism
from the outcome Y , all imputation methods are preferable; however, JM-Hom also
leads to biased estimates and marked undercoverage for most parameters. Inference
on the fixed effect parameters after imputation with JM-Het is affected by smaller
biases, and leads to good coverage levels. However, bias is larger in the estimation of
the variance components. Finally, JM-SMC leads to unbiased parameter estimates
and good coverage levels.

Table 1 Base-case scenario: mean and coverage level of fixed effect parameter estimates and mean
of variance component estimates over 1000 simulations. We compare Full Data (FD), Complete
records (CR), JM imputation with a homoscedastic (JM-Hom) or heteroscedastic (JM-Het) impu-
tation model and substantive model compatible JM-MI (JM-SMC).

β0 β1 β2 σ2
u0 σ2

u1 σ2
e

Method Mean Cov Mean Cov Mean Cov Mean Mean Mean
True value 0.50 0.95 1.00 0.95 -0.30 0.95 1.00 1.00 1.00
FD 0.49 0.94 1.00 0.93 -0.30 0.96 0.99 1.01 1.00
CR 1.08 0.00 0.89 0.82 -0.25 0.72 0.57 0.79 0.92
JM-Hom 0.40 0.88 1.07 0.85 -0.28 0.91 1.12 0.54 1.25
JM-Het 0.44 0.92 1.04 0.92 -0.29 0.94 1.09 0.93 1.05
JM-SMC 0.49 0.94 1.00 0.93 -0.30 0.95 0.99 1.01 1.00

Figure 1 pools the results across all the five simulation scenarios into a single
panel. This is in terms of relative bias and coverage level for all the fixed effect
parameter estimates. While JM-SMC always leads to negligible bias and coverage
very close to the nominal level, JM-Hom and JM-Het are prone to bias in the esti-
mation of some parameters in all scenarios. This is particularly serious for the two
scenarios with an interaction and a quadratic effect. CR estimates are again always
the most seriously biased, because of the missing data mechanism.

Finally, Figure 2 compares the level-2 variance component estimates from the
three MI methods. Once again, JM-SMC is the only method leading to unbiased
parameter estimates, while JM-Hom is the worst imputation method. JM-Het con-
sistently overestimates the random intercept variance and gives biased estimates of
the random slope variance.

4 Conclusions

We have investigated the behaviour of a new substantive model compatible MI strat-
egy to deal with missing data in a multilevel dataset, and compared it with two
existing multilevel imputation strategies. In particular, we have showed that when
the analysis model of scientific interest includes a random slope, an interaction or a
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non-linearity, our proposed new method is the only one able to take this into account
during the imputation, leading to correct inference.

The only additional price to pay for using this method, is that the precise func-
tional form of the substantive model needs to be known in advance of the imputation
process. Further research will investigate what is the best approach to take when
model selection has to be performed along the imputation. Future work will also
explore ways to impute level-2, i.e. cluster-level, variables within this framework.

All the imputation models presented in this paper can be fitted with functions
jomo and jomo.smc in the R package jomo. This allows for binary and survival
outcomes as well.

In conclusion, while standard JM-MI remains a valuable, and more flexible,
method for the imputation of simple multilevel dataset, substantive model compati-
ble JM-MI is preferable in presence of partially observed covariates with a random
slope, an interaction or a non-linear term.

Acknowledgements This work was supported by the Medical Research Council, grant numbers
MC UU 12023/21 and MC UU 12023/29.

Fig. 1 Boxplots summarising results of five simulation scenarios. We compare relative bias (left
panel) and coverage level (right panel) of fixed effect parameter estimates. The red lines indicate
0% relative bias and 95% coverage level. We compare Full Data (FD), Complete records (CR) and
the three MI strategies.
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