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Abstract We derive the closed-form solution to the Riccati equation for the steady-
state Kalman filter of the multivariate local linear trend model. Based on this result
we propose a fast EM algorithm that provides approximated maximum likelihood
estimates of the model’s parameters and apply it to large-scale stochastic volatility
models.
Abstract Deriviamo la soluzione dell’equazione di Riccati relativa al filtro di
Kalman in steady-state per il local linear trend multivariato. Utilizziamo tale risul-
tato per proporre un algoritmo EM, che calcola un’approssimazione della stima di
massima verosimiglianza dei parameteri del modello. Applichiamo tale metodo di
stima a modelli di volatilità stocastica di grandi dimensione.

Key words: Algebraic Riccati equation, state-space models, Kalman filtering, smooth-
ing, EM, multivariate stochastic volatility.

1 Introduction

Multivariate stochastic volatility (SV) models are useful for portfolio managers only
if they can be applied to portfolios of tens or hundreds of assets. Indeed, in the
GARCH literature the most successful multivariate models are those, such as the
Constant Conditional Correlation (CCC) and the Dynamic Conditional Correlation
(DCC) that, by splitting the estimation processes is a sequence of computationally
feasible steps, make the application to large portfolios possible. However, the SV
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literature is till lacking of a computationally feasible procedure to estimate large
scale models, possibly dividing the estimation process into sub-steps.

In this work we consider the multivariate extensions of the SV models of Har-
vey et al (1994) and Alizadeh et al (2002), which have a state-space representation
as multivariate local linear trend models, provide the steady-state Kalman filter re-
cursions by solving the related Riccati equation in closed form and propose an EM
algorithm that approximates the (quasi) maximum likelihood estimate of SV model.

2 Main results

It is well known that, for time-invariant state-space models, the Kalman filter even-
tually converges to the steady-state solution such that the error covariance matrix
satisfies the so called algebraic Riccati equation. Explicit solutions for such matrix
equation are in general not available. A notable exception is represented by the uni-
variate local level model (see Harvey, 1989) because the Kalman filter covariance
matrix reduces to a scalar. In this paper we show that an analytical solution exists
also for the multivariate local level model (also known as multivariate exponential
smoothing or exponentially weighted moving average or EWMA). In what follows
we use this convention: MMM is a matrix and MMM′ is its transpose, mmm is a column vec-
tor such that mmm′ is a row vector. A lower-case letter, such as x, represents a scalar.
Finally, 0 is used indiscriminately for matrices, vectors and scalars.

Consider the time-invariant state-space representation of the multivariate expo-
nential smoothing process:

yyyt = ααα t + εεε t , εεε t ∼WN(000,ΣΣΣ ε)

ααα t+1 = ααα t +ηηη t , ηηη t ∼WN(000,ΣΣΣ η)
(1)

where WN denotes a white noise sequence. In what follows it is assumed that ΣΣΣ ε

and ΣΣΣ η are symmetric positive definite matrices and E(εεε tηηη
′
t) = 0. Note that all

vectors and matrices in (1) have dimension d and d× d respectively. The Kalman
filter recursions for this model can then be written as follows:

Innovation : vvvt = yyyt −aaat ,
Innovation variance : FFF t = PPPt +ΣΣΣ ε ,
Kalman gain : KKKt = PPPtFFF−1

t ,
Prediction : aaat+1 = aaat +KKKtvvvt ,
Prediction error : PPPt = PPPt −PPPtFFF−1

t PPPt +ΣΣΣ η .

In the steady-state the the covariance matrix PPPt converges to the so called alge-
braic Riccati equation, that is,

PPP = PPP−PPP(PPP+ΣΣΣ ε)
−1PPP+ΣΣΣ η , (2)

where PPP is a symmetric positive definite matrix. The following proposition provides
the analytical (matrix) solution of (2), that is the algebraic link between PPP and the
pair ΣΣΣ ε , ΣΣΣ η .
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Theorem 1. Consider the system as in (1) where ΣΣΣ η is positive semi-definite while
ΣΣΣ ε is strictly positive definite. Moreover, consider the following Cholesky decom-
position ΣΣΣ ε = MMMMMM′ and defining QQQ = MMM−1

ΣΣΣ η MMM−1′ = ΨΨΨ∆∆∆ΨΨΨ
′ such that for the

last eigendecomposition ΨΨΨ is a matrix of eigenvectors (i.e. ΨΨΨΨΨΨ
′ = III) and ∆∆∆ =

diag(δ1,δ2, · · · ,δd) is a diagonal matrix of eigenvalues. Then there exists a unique
positive definite solution for PPP. The solution is

PPP =
1
2

MMMΨΨΨ

[
∆∆∆ +(∆∆∆ 2 +4∆∆∆)

1
2

]
ΨΨΨ
′MMM′. (3)

Going back to the Kalman filter recursion, it is immediate to see that, in steady
state, the only step to compute is the prediction step, because all the other quantities
are time-invariant. Also the implementation of the smoothing process results greatly
simplified. Indeed, the smoothing algorithm proposed by de Jong (1988, 1989) (see
also Ansley and Kohn, 1985; Koopman, 1997) becomes rrrn = 000, NNNn = 000,

rrrt−1 = FFF−1vvvt +LLL′rrrt (4)

NNNt−1 = FFF−1 +LLL′NNNtLLL (5)

where LLL = III−KKK is also time-invariant.
The maximum likelihood estimation of a model in state space form using the

EM algorithm is fully discussed by Shumway and Stoffer (2017) (see also Koop-
man, 1993; Durbin and Koopman, 2001). In practice, the EM algorithm for the
multivariate local level can be implemented using the simple updating expressions
(3.5), (3.6) and (3.7) of Section 3 in Koopman (1993). More specifically, for model
(1) these expressions can be restated as follows:

ΣΣΣ ε(ι +1) = ΣΣΣ ε(ι)+ΣΣΣ ε(ι)ΘΘΘ eΣΣΣ ε(ι) (6)
ΣΣΣ η(ι +1) = ΣΣΣ η(ι)+ΣΣΣ η(ι)ΘΘΘ rΣΣΣ η(ι) (7)

where ι = 0,1, . . .. Here ΣΣΣ ε(0), ΣΣΣ η(0) are the starting values. In addition,

ΘΘΘ r =
1
n

n

∑
t=1

(rrrtrrr′t −NNNt) (8)

where rrrt and NNNt are constructed as in (4) and (5), and

ΘΘΘ e =
1
n

n

∑
t=1

(eeeteee′t −DDDt) (9)

with
eeet = FFF−1vvvt −KKK′rrrt (10)

and
DDDt = FFF−1 +KKK′NNNtKKK. (11)
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Using the steady-state filter and smoother, we obtain a computationally feasible
procedure to approximate the maximum likelihood estimation of the multivariate
local level model.

Algorithm 1 (Approximate maximum likelihood estimation) Fix arbitrary ini-
tial covariance matrices ΣΣΣ ε and ΣΣΣ η and iterate as follows.

1. Obtain PPP from equation (3) and compute the steady-state Kalman filter matrices
and start the Kalman filter with aaa1 = yyy1 (see Harvey, 1989, p. 26).

2. Run aaat = KKKyyyt +(III−KKK)aaat−1 and for t = 2, . . . ,n.
3. Run the steady-state smoothing formulae (4), (5), (10), (11), (8) and (9).
4. Run the EM step updating the parameters using (6) and (7).
5. Go to step 1. until the likelihood increment is negligible.

Table 1 compares the execution time and the precision of our algorithm to exact
MLE on simulated vector time series of dimension up to d = 20. For d = 100 our
algorithm provides estimation in few minutes, while it was not possible to get results
for MLE.

Table 1 Comparisons of Kalman filter based maximum likelihood estimates versus estimates ob-
tained by Algorithm 1 (MAD = mean absolute difference, MAE = mean absolute error).

Execution time (sec) MAD MAE MLE MAE Alg. 1
d Classic Alg. 1 Ratio ΣΣΣ ε ΣΣΣ η ΣΣΣ ε ΣΣΣ η ΣΣΣ ε ΣΣΣ η

3 1.3 0.1 10.6 0.002 0.030 0.006 0.006 0.007 0.031
5 5.7 0.5 11.8 0.002 0.022 0.006 0.007 0.006 0.023

10 60.3 1.6 37.0 0.001 0.012 0.006 0.007 0.006 0.015
20 1490.4 10.1 147.8 0.001 0.006 0.006 0.008 0.006 0.011

3 Application to multivariate stochastic volatility models

In this section, we demonstrate how the stochastic volatility (SV) models of Harvey
et al (1994) (from now on HRS) and Alizadeh et al (2002) (from now on ABD) can
be successfully estimated on large portfolios using our Algorithm 1. In particular,
while Harvey et al (1994) discuss how to estimate small scale multivariate stochastic
volatility model using state space methods, Alizadeh et al (2002) cover only the
univariate model. Therefore, we first show how to extend the model by Alizadeh et al
(2002) to the multivariate case and then apply our approximate maximum likelihood
estimation to a large portfolio of stocks.

Let yit be the, possibly mean-adjusted, return of stock i ∈ {1,2, . . . ,d} at time
t ∈ {1,2, . . . ,n}, then the multivariate stochastic volatility model Harvey et al (1994)
consider is defined by

yit = exp(hit/2)ζit ,

hit+1 = hit +ηit ,
(12)
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where exp(hit) plays the role of the time-varying variance, whose logarithm evolves
according to a random walk. The random vectors ζζζ t and ηηη t obtained by stacking
the random variables {ζ1t , . . . ,ζdt} and {η1t , . . . ,ηdt}, respectively, into vectors are
assumed to be normally distributed with zero means and covariance matrices ΣΣΣ ζ

and ΣΣΣ η . The matrix ΣΣΣ ζ is constrained to be a correlation matrix. Harvey et al (1994)
model the logarithm of the squared return, so that equation (12) can be rewritten as

log(y2
it) = hit + log(ζ 2

it ),

hit+1 = hit +ηit ,
(13)

This set of equations can be easily cast into the linear state space form as

wwwt = hhht + εεε,

hhht+1 = hhht +ηηη it ,
(14)

where the i-th element of wwwt is equal to log(y2
it)+ 1.27 and εεε t is a non-Gaussian

random i.i.d. sequence whose i j-th element of the covariance matrix ΣΣΣ ε is given by
equation B.9 in Harvey et al (1994).

Harvey et al (1994) propose to estimate the unknown covariance matrices ΣΣΣ ε

and ΣΣΣ η by Gaussian quasi maximum likelihood, approximating the distribution of
εεε t with a normal with the same mean and covariance matrix. The log-variances hit
can be estimated using Kalman filtering and state smoothing, which in this case
provide just best linear estimates.

Alizadeh et al (2002) propose a stochastic volatility model based on the logarithm
of stock price ranges (daily maximum minus daily minimum) instead of log-squared
returns. Let vit = log(Pmax

it −Pmin
it ) be the sequence of daily log-ranges, with Pmax

it
and Pmin

it representing the maximum and minimum price of stock i for the day t. If
each price process is well described by a Brownian motion, than the distribution of
the log-range is approximately Gaussian (cf. Alizadeh et al, 2002, Table I and Figure
1). Assuming that the approximation remains valid also in a multivariate context,
then we can write a multivariate stochastic volatility model based on log-ranges
exactly as in equation (14), where now the generic element of wwwt is wit = vit−0.43,
and the errors εit have all the same standard deviation σε = 0.29 (cf Alizadeh et al,
2002, Table I).

We estimated both SV models for a portfolio composed by 94 daily stock returns
belonging to the SP100 index ranging from 2007-01-04 to 2017-04-28 (n = 2598).
As customary in many large scale multivariate GARCH models, we split the esti-
mation process in two steps: first, we estimated the correlation matrix of the returns,
from which we obtained the covariance matrix ΣΣΣ ε , and then we applied our Algo-
rithm 1 by running the EM update only for the matrix ΣΣΣ ηηη , as in equation (7), and
using the ΣΣΣ ε estimated in the first step.

If we concentrate on the correlation matrix of the disturbances that drive the hit
processes, we notice that all correlations are positive, but those of model HRS are
generally larger than those of model ABD. The same message can be derived from
the cumulated eigenvalues plot in the left panel of Figure 1: for model HRS the first
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three principal components cover more than 90% of the variance, while the same
share of total variance is reached for model ABD with 20 components. If we use
the scores of the first principal component of the estimated hhht in the two models
and take the suitable transforms to derive volatility indicators, we get the volatility
profiles depicted in the right panel of Figure 1. The profiles are similar, but they
differ in some extreme event and in the level, which is higher for the HRS model.

0 20 40 60 80

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

cu
m

ul
at

ed
 e

ig
en

va
lu

es

HRS
ABD

20
60

10
0

H
R

S

10
30

50

2008−01−01 2012−01−01 2016−01−01

A
B

D

Fig. 1 Left) cumulated eigenvalues of the correlation matrix derived from ΣΣΣ η estimated in the two
models. Right) Ensemble volatility indicators derived from the first principal component scores
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