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Abstract Motivated by segmentation issues in marine studies, a novel hidden
Markov model is proposed for the analysis of cylindrical space-time series, that
is, bivariate space-time series of intensities and angles. The model is a multilevel
mixture of cylindrical densities, where the parameters of the mixture vary at the
spatial level according to a latent Markov random field, while the parameters of the
hidden Markov random field evolve at the temporal level according to the states of a
hidden Markov chain. Due to the numerical intractability of the likelihood function,
parameters are estimated by a computationally efficient EM algorithm based on the
specification of a weighted composite likelihood. The proposal is tested in a case
study that involves speeds and directions of marine currents in the Gulf of Naples.

Riassunto Motivati da problemi di classificazione in studi marini, proponiamo un
nuovo modello a classi markoviane latenti per l’analisi di serie cilindriche spazio-
temporali, ovvero serie spazio-temporali bivariate di intensità ed angoli. Il modello
è una mistura multi-livello di densità cilindriche, con parametri che variano al liv-
ello spaziale secondo un campo markoviano latente, i cui parametri variano nel
tempo secondo una catena markoviana latente. A causa dell’intrattabilità numer-
ica della funzione di verosimiglianza, i parametri sono stimati da un algoritmo EM
basato sulla definizione di una funzione di pseudo-verosimiglianza composita. Il
modello è applicato all’analisi di una serie spazio-temporale contenente le velocità
e le direzioni delle correnti marine del golfo di Napoli.
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1 Introduction

A detailed knowledge of coastal currents is crucial for a valid integrated coastal zone
management. Among the different available ocean observing technologies, high-
frequency radars (HFRs) have unique characteristics, that make them play a key
role in coastal observatories. HFR data can be conveniently described as space-time
bivariate arrays of angles and intensities that respectively indicate the directions and
the speeds of sea currents across space and over time. Data with a mixed circular-
linear support are often referred to as cylindrical data [1], because the pair of an
angle and an intensity can be represented as a point on a cylinder.

The statistical analysis of cylindrical space-time series is complicated by the
unconventional topology of the cylinder and by the difficulties in modeling the
cross-correlations between angular and linear measurements across space and over
time. Additional complications arise from the skewness and the multimodality of
the marginal distributions of the data. As a result, specific methods for the analy-
sis of space-time cylindrical data have been relatively unexplored. Proposals in this
context are limited to geostastical models, where cylindrical data are assumed con-
ditionally independent given a latent process that varies continuously across space
and time [15]. Geostatistical models give good results in open sea areas, where
waves and currents can move freely without obstacles. Sea motion in coastal areas
provides, however, a different setting. Coastal currents are shaped and constrained
by the orography of the site. As a result, coastal circulation is much more irregular
than ocean-type patterns and it is inaccurately represented by traditional geostatisti-
cal models, which do not incorporate orographic information. The development of a
physical model that well represents sea motion in coastal areas can be a formidable
task if the orography of the site is irregular. A more practical approach relies on
decomposing an observed circulation pattern into a small number of local regimes
whose interpretation is easier than the global pattern.

To accomplish this goal, we propose a model that segments coastal data accord-
ing to finitely many latent classes that vary across space and time and are associated
with the distribution of the data under specific, space-time varying, environmental
conditions. Specifically, we assume that the joint distribution of the data is well
approximated by a multi-level mixture of cylindrical densities. At each time, the
parameters of the mixture vary according to a latent Markov field, whose param-
eters evolve over time according to a latent Markov chain. The idea of using hid-
den Markov models to segment cylindrical data is not completely novel. Hidden
Markov models have been proposed for segmenting cylindrical time series [6] and
hidden Markov fields have been proposed to segment spatial cylindrical data [11].
Our proposal integrates these specifications in a space-time setting.

A potential disadvantage of the model is the intractability of the likelihood func-
tion. We address estimation issues by relying on composite likelihood (CL) methods
[14, 7]. This estimation strategy, on one hand, provides feasible and fast estimation
methods. On the other hand, some dependence among observations is lost, result-
ing in a loss of statistical efficiency. However, consistency of the CL estimators still
holds under regularity conditions [9]. Under these conditions, furthermore, CLEs
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are asymptotically normal with covariance matrix given by the inverse of a sand-
wich matrix, known as Godambe information [4] rather than the usual Fisher infor-
mation matrix for maximum likelihood estimators (MLEs). CL methods have been
successfully applied in spatial and space-time settings [11, 3].

2 Marine currents in the Gulf of Naples

The Gulf of Naples is a semienclosed marginal basin of the central Tyrrhenian Sea.
It is a coastal area characterized by striking environmental contrasts: one of the
most intensely urbanized coastlines in the whole Mediterranean, with massive in-
dustrial settlements, the very polluted Sarno river mouth, a number of distributed
sewage outlets, coexisting with the extremely scenic coastal landscapes of the Sor-
rento Peninsula, of the Islands of Capri, Procida and Ischia and with unique un-
derwater archaeological treasures (e.g. Baiae and Gaiola). For this reason, the Gulf
of Naples has been subject to intense monitoring of its meteorological and oceano-
graphic conditions. In particular, starting in 2004 an HFR system has been installed
along its coastline, consisting first of two, and from 2008 of three, transceiving an-
tennas operating at 25 MHz, providing hourly data of the surface current field at
1-km2 horizontal resolution. Such a system has shed light on very rich, multiple-
scale surface dynamics and on the mechanisms driving water renewal of individual
subbasins of the gulf [8, 13, 2]. Moreover, these data have been exploited in numer-
ical models to enhance their predictive skills through state of the art assimilation
schemes [5]. The functioning principle of HFRs is based on resonant backscatter,
resulting from coherent reflection of a transmitted electromagnetic wave by ocean
surface waves whose wavelength is half of the transmitted electromagnetic wave-
length. As a result, every station can provide only the radial component of the sur-
face currents with respect to the antenna location. Two, at least, or even better more
stations (to ensure better statistics, to minimize gaps due to physical obstacles or to
electromagnetic disturbances, to lower geometric dilution of precision) are needed
to combine the radial information to obtain a current vector field. A vector map (or
field) decomposes the current’s field into the u- and v-components (Cartesian rep-
resentation) of the sea surface at each observation point of a spatial lattice, where
u corresponds to the west–east and v to the south–north current component. Joint
modelling of u and v is, however, typically complicated by cross-correlations that
vary dramatically in different parts of the spatial domain [12]. We therefore model
sea current fields by using polar coordinates. Specifically, the observed current field
is represented as a cylindrical spatial series, obtained by computing for each obser-
vation site the speed y =

√
u2 + v2 ∈ [0,+∞) of the current (meters per second) and

the direction x = tan2−1(u,v) ∈ [0,2π) of the current (radians), where tan2−1 is the
inverse tangent function with two arguments and x follows the geographical con-
vention, clockwise from North (0) to East (π/2). The data that motivated this paper
include current speed and direction across a grid of 300 points, observed every hour
during March 2009 in the Gulf of Naples.
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3 A cylindrical space-time hidden Markov model

The data that motivated this work are in the form of an n× T array of cylindri-
cal data, say (zit , i = 1 . . .n, t = 1 . . .T ), where zit = (xit ,yit) is a pair of an angle
xit ∈ [0,2π) and an intensity yit ∈ [0,+∞), observed at time t and in the spatial site
i. We assume that the temporal evolution of these data is driven by a multinomial
process in discrete time ξξξ = (ξξξ t , t = 1 . . .T ), where ξξξ t = (ξt1, . . . ,ξtK) is a multi-
nomial random variable with K classes. We specifically assume that such process
is distributed as a Markov chain, whose distribution, say p(ξξξ ;πππ), is known up to a
vector of parameters πππ that includes the initial probabilities and the transition prob-
abilities of the chain. Conditionally on the value assumed each time by the Markov
chain, the spatial distribution of the data at time t depends on a multinomial process
in discrete space ut = (uit , i = 1 . . .n), where uit = (uit1, . . . ,uitG) is a multinomial
variable with G classes. We assume that such spatial process is distributed as a G-
parameter Potts model, whose parameters depend on the value taken at time t by the
latent Markov chain p(ξξξ ;πππ). This model depends on G−1 sufficient statistics

ng(uuut) =
n

∑
i=1

uitg, g = 1 . . .G−1,

that indicate the frequencies of each latent class across the study area, and one suf-
ficient statistic

n(uuut) =
n

∑
i=1

∑
j>i: j∈N(i)

Gt−1

∑
g=1

uitgu jtg,

which indicates the frequency of neighboring sites which share the same class (for
each i, N(i) indicates the sets of neighboring sites of i). Precisely, we assume that
the joint distribution of a sample ut , conditionally on ξξξ t , is known up to an array
of class-specific parameters ααα = (αgk,g = 1 . . .G− 1,k = 1 . . .K) and a vector of
auto-correlation parameters ρρρ = (ρ1, . . . ,ρk), and given by

p(uuut | ξξξ t ;ααα,ρρρ) =
exp

(
∑

Gt−1
g=1 ng(uuut)αgt +n(uuut)ρt

)
W (ααα,ρρρ)

, (1)

where

αgt =
K

∑
k=1

ξtkαgk

and

ρt =
K

∑
k=1

ξtkρk.

Our proposal is completed by assuming that, conditionally on the values taken
by the Markov chain and the Potts model, the observed cylindrical data are inde-
pendently distributed according to cylindrical densities, known up to a vector of
parameters that depends on the latent class taken by the latent Markov random field



Multilevel HMM 5

at time t in site i. Precisely, we assume that

f (z | ξξξ ,u) =
n

∏
i=1

T

∏
t=1

f (zit ;θθθ itg),

where

θθθ itg =
G

∑
g=1

uitgθθθ g,

and θθθ g is the gth entry of a vector of parameters θθθ = (θθθ 1, . . . ,θθθ G). Under this
setting, we follow [1] and exploit the following parametric cylindrical distribution,
namely

f (z;θθθ) =
αβ α

2π cosh(κ)
(1+λ sin(x−µ))yα−1 exp(−(βy)α(1− tanh(κ)cos(x−µ))),

(2)
known up to five parameters θθθ = (α,β ,κ,λ ,µ), where α > 0 is a shape parameter,
β > 0 is a scale parameter, µ ∈ [0,2π) is a circular location parameter, κ > 0 is a
circular concentration parameter, while λ ∈ [−1,1] is a circular skewness parameter.

The joint distribution of the observed and the latent variables is therefore given
by

f (z,u,ξξξ ;θθθ ,πππ,ααα,ρρρ) = f (z | uuu;θθθ)p(u;ρρρ,ααα)p(ξξξ ;πππ). (3)

By integrating this distribution with respect to the unobserved variables, we obtain
the likelihood function of the unknown parameters

L(θθθ ,πππ,ααα,ρρρ;z) = ∑
ξξξ

∑
uuu

f (z,uuu,ξξξ ;θθθ ,πππ,ααα,ρρρ). (4)

The maximization of the corresponding complete log-likelihood through an EM
algorithm is unfeasible. As a result, we propose to estimate the parameters by max-
imizing a surrogate function, namely a composite log-likelihood function. Our pro-
posal is based on the specification of a cover A of the set S = {1 . . .n} of the ob-
servation sites, i.e. a family of (not necessarily disjoint) subsets A ⊆ S such that
∪A∈A = S. For each subset A, we respectively define zA = (zit , i ∈ A, t = 1 . . .T ),
uA = (uit , i ∈ A, t = 1 . . .T ), and

LA(θθθ ,πππ,ααα,ρρρ;zA) = ∑
ξξξ

∑
uuuA

f (zA,uuuA,ξξξ ;θθθ ,πππ,ααα,ρρρ) (5)

as the contribution of the data in A to the composite likelihood (CL), where
CL=∏A∈A LA. This composite likelihood function involves summations over all the
possible values that uuuA can take. As a result, the numerical tractability of these steps
dramatically decreases with the cardinality of the largest subset of the cover A. On
the one side, this would suggest to choose a cover with many small subsets. On the
other side, a cover that includes a few large subsets is expected to provide a CL func-
tion that is a better approximation of the likelihood function. Because summations
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over uuuA become cumbersome for | A |≥ 3, a natural strategy is a cover that includes
subsets with 2 elements. When A include all the subsets of two elements, then com-
posite likelihood reduces to the pairwise likelihood function [14]. In a spatial set-
ting, a pairwise likelihood can be further simplified by discarding all the pairs (i, j)
that are not in the neighborhood structure N(i), i = 1 . . .n. This choice provides a
computationally efficient EM algorithm, without sacrificing the good distributional
properties that are expected by a CL estimator.
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