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Abstract Organizing the emergency medical system in a big city is an extremely
difficult task given the huge number of people that everyday pass through the city
area. In this paper we employ a spatio-temporal process to model the emergency
event occurrences in Milan. The proposed approach has been found effective in
predicting events through the city area and computationally efficient despite the big
amount of data to be processed.

Abstract L’organizzazione di un servizio di emergenza sul territorio risulta essere
un compito complesso nelle aree metropolitane come Milano dato I’enorme numero
di persone che vi transitano quotidianamente. In questo lavoro si adotta un mod-
ello spazio temporale per rappresentare la dinamica delle chiamate di emergenza
sul territorio del capologuo Lombardo. Il metodo adottato si é dimostrato essere
efficace nel prevedere gli eventi sul territorio comunale nel periodo di tempo con-
siderato e computazionalmente efficiente nonostante la consistente mole di dati da
elaborare.
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1 Introduction

Given the large number of people that everyday pass through the metropolitan area,
the organization of the emergency medical system (EMS) in Milan is an extremely
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difficult task. Numerous studies have proposed different models for the optimal al-
location of ambulances in the territory and each of these models is based on ad-hoc
predictions for the future locations of emergency events. In this paper we imple-
mented an algorithm that predicts the distribution of the ambulance interventions in
Milan for every hour of the day and every place of the urban area.

All ambulance dispatches from 1st of January 2015 till 25th of September 2017
have been considered for a total of, approximately, 500’000 events. The spatial dis-
tribution of the events is reported in (Figure 1-(a)). The figure clearly points out an
anomalous pick of event intensity in the north-west part of the map caused by the
universal exposition hosted by Milan (EXPO) that took place in this area in 2015.
All the events occurred in the EXPO area have been removed from the subsequent
analysis.

This type of data is challenging for several reasons:

Sparsity:  even if the dataset is extremely large, there are only 21 events per hour
on average scattered on an area of about 180 km?;

Computational challenges: ~ the numerical estimation of a spatio-temporal model
is particularly difficult considering the long training time of the algorithms;

Seasonality:  the total number of events per hour exhibits both daily and weakly
seasonality (Figure 1-(b)).

2 Spatio-Temporal Model

Using the approach suggested in [5], we modeled Milano’s ambulance demand on
a continuous spatial domain § € R? and a discretized temporal domain of one-
hour intervals T = {1,2,..., }. We assumed that ambulance demand follows a Non-
homogeneous Poisson Process [1] with intensity function 4, (s) for each time period
t. Furthermore, we decomposed this intensity function as

A(s) =8 fi(s), s€eSCR*:reN (1)
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Fig. 1 Spatial distribution of the events in Milan during 2015 (a). Temporal distribution of the
number of interventions per hour of the day (b).
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where §; models the expected number of events during the period ¢ in the region S
and f;(s) represents the continuous spatial density of the ambulance demand at time
t. A dynamic latent factor structure has been assumed for the temporal component
and it has been estimated iteratively (Section 2.1). The spatial component has been
estimated non-parametrically via a weighted kernel (Section 2.2).

2.1 The temporal component

Following the approach suggested in [3, 2], we assumed a dynamic latent factor
model for the temporal component &; and estimated it using smoothing splines [4].
More specifically we supposed that it is possible to predict the mean value J; using
a set of deterministic covariates, namely the hour of the day, the day of the week
and the week of the year, that were included in the model by applying constraints
on the factor loadings as explained below.

To avoid negative values we modelled the intra-day pattern on the log scale and
we assumed that it can be approximated using a linear combination of a small num-
ber K of factors' i.e.

log8; =Lifij+...+Lixfxj, i=1,...,365, j=1,...,24. )

The model can be expressed in matrix form as logA = LF’. The matrix L is further
partitioned as
logA = LF' = (H\B; + HyB,)F’ 3)

where H; and H; are the incidence matrix that identifies the day of the week and the
incidence matrix that identifies the week of the year respectively, whereas B and
B> are matrices of unknown coefficients with suitable dimensions.

Since both F and L are unknown matrices, we implemented the following algo-
rithm [2] to estimate them:

1. using singular value decomposition we decomposed the matrix of the observed
counts logarithms as UDV'’ and we obtained an initial estimate L= UD and F’ =
%48

2. considering F as known, we updated the estimate of L using a gam model with
a Poisson response variable and the day of the week and the week of the year as
covariates;

3. considering L as known, we updated the estimate of F using again a gam model
with a Poisson response and the hour of the day as covariate;

4. we iterated 2 and 3 until convergence.

! The value of K was chosen by training the model on the data collected in 2015 data validating it
using 2016 data.
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2.2 The spatial component

The continuous spatial density function f(-) has been estimated at a future time
period u using the spatio-temporal weighted kernel density estimator [5]

_ Yiegy, O(si, u)Ku(s —sti)
Yie 7, O(Siv,u)

Su(s) , ses )]

where 7, represents a set of past periods, ®(-) a weight function and Ky(-) a
multivariate gaussian Kernel with bandwidth matrix H.

Figure 1-(b) shows that the observed number of events exhibits both daily and
weakly seasonality. The aim of the weight function is to take advantage of these
patterns and select those observations that are mostly influential in predicting the
density function at a generic future time point u. Analysing the data it emerged that
the strength of these patterns was different in different areas of Milan. For this reason
we divided the municipality in C = 9 neighbourhoods and the weight function was
estimated separately in each cell.

We assumed [5] that the prediction at a future time point # depends only upon
the temporal lag between u and the event at time ¢. The impact of the event oc-
curred at time ¢ is weighted by the following weight function that measures how
two observations located in a cell ¢ are positively correlated:

B B sin? Lg;[) sin? 7”%78[)
oc(u—1)=py +py P, ( )p4,c ( ), ce{l,....c} (9

where p; describes any short-term seasonality, p3 and p4 express daily and weakly
seasonality respectively and p, is a discount factor. Since using a likelihood ap-
proach to estimate these coefficients is prohibitive due to the computational costs,
we implemented the algorithm suggested in [5]. Hence py,...,ps have been esti-
mated by minimizing the following quantity:

M

min Y (AT (1) — pococ(1))? (®)

Pjc:J€{0,...4} =1

where A} represents the positive part of the autocorrelation function of the propor-
tion of events in the spatial cell ¢, M is the maximum lag considered in the autocor-
relation function and pg . is a normalizing constant. The minimization problem was
worked out using the optim function of R [6].

3 Results and conclusions

We trained the algorithm described in section 2.1 using the data from 2015. The
number of factors K was identified via an external cross validation based on the
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dataset collected in 2016. K = 4 is the optimal value suggested by the procedure.
Finally the model has been tested using again the 2016 data. The results are dis-
played in Figure 2 where the scatter plot of the predicted counts versus the observed
counts is reported. A boxplot of predictions is drawn at each observed frequency
to improve the graph readability. Patterns somehow similar were found for the two
years. Despite a great variability and some potential outlying values, the predictions
seem to replicate reasonably well the observed data both for the train set (year 2015)
and for the test set (year 2016).

The spatial dynamic has been estimated using the procedure detailed in Section
2.2. First we solved the minimization problem mentioned above to obtain an es-
timate of the coefficients for the weight function. Then we estimated the spatial
density using Equation 4 for one particular day. To exemplify the procedure we
considered two maps for the 26th of September 2017, one estimated at 02:00 AM
and the other estimated at 2:00 PM. The results are displayed in Figure 3 where
darker areas are associated to higher values of the spatial density. There are clear
differences between the two plots: during daytime hours the events are mostly con-
centrated around popular places and crossing points such as the Duomo area or the
Central Station areas whereas during the night interventions are more scattered over
the whole territory of the municipality.

This study demonstrates how resorting to a spatio-temporal non homogeneous
Poisson model is adequate to represent the temporal and the spatial patterns that are
present in the EMS data of Milan. Some areas and some hours of the day are found
more critical for emergency events and this is a preliminary step to support local
authorities in optimally allocating ambulances and resources in the territory. From
the statistical modelling perspective some further enhancements can be introduced
to improve the diagnostic, for instance developing algorithms to simulate events
from the estimated model and to create measures of the prediction performance.
Moreover, alternative specifications for the weight function should be also consid-
ered. Finally, a comparison between the temporal and spatial model suggested in
this paper and other approaches such as machine learning algorithms (for instance,
boosting or random forest) can be also useful to identify the best modelling strategy
to support authorities in the day by day activity.

Boxplot of predicted values vs observed values (2015) Boxplot of predicted values vs observed values (2016)
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Fig. 2 In these two plots we display the predictive performance of the dynamic latent factor model
for the training data (2015, left plot) and for the test data (2016, right plot). We can see that, despite
high variance in the estimates, both plots show good predictive performances.
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Fig. 3 Spatial density estimate for the 26th of September 2017 at 02:00 AM (a) and 02:00 PM
(b). Some important places of the city are highlighted on both maps. Darker areas are associated
to higher values of the spatial density.
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