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Abstract In service quality evaluation, data are often categorical variables with or-
dered categories and collected in two way contingency table. The Taguchi’s statistic
is a measure of the association between these variables as a simple alternative to
Pearson’s test. An extension of this statistic for three way contingency tables han-
dled in two way mode is introduced. We highlight its several properties, the approx-
imated distribution, a decomposition according to orthogonal quantities reflecting
the main effects and the interaction terms, and an extension of cumulative corre-
spondence analysis based on it.
Abstract Nella valutazione della qualità dei servizi erogati, i dati rappresentano
spesso variabili qualitative ordinali raccolte in tabelle di contingenza a due vie.
L’indice di Taguchiè una misura dell’associazione esistente tra queste variabili e
nasce come un’alternativa al test di Pearson in presenza di variabili ordinali. In
questo lavoro viene presentata una estensione di questo indice per tabelle di con-
tingenza a tre vie. Se ne evidenziano diverse proprietà, la distribuzione approssi-
mata, una decomposizione rispetto a quantità che riflettono gli effetti principali e
l’interazione, nonch̀e un’estensione dell’analisi delle corrispondenze.
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1 Introduction

Service companies have given increasing importance to customer satisfaction (here-
after CS) over the years worldwide. Measuring the quality of a service is indeed
a fundamental and strategic function for every firms because it allows checking the
level of efficiency and effectiveness perceived by users. In service quality evaluation,
data are often categorical variables with ordered categories and usually collected in
two way contingency table. To determine the nature of the association, tests involv-
ing the Pearson chi-squared statistic are generally considered. However, the statistic
does not take into account the structure of ordered categorical variables [1]. To over-
come this problem, Taguchi [6, 7] developed a simple statistic that does take into
consideration the structure of an ordered categorical variable. It does so by consider-
ing the cumulative frequency of the cells of the contingency table across the ordered
variable. An extension of this statistic for three way contingency tables handled in
two way mode is introduced in section 4, highlighting some properties and its ap-
proximated distribution. Moreover, an extension of correspondence analysis based
on the suggested new statistic is proposed to study the association from a graphical
point of view. It highlights the impacts of the main effects and the interaction terms
on the association. This is obtained in section 5 by means of a decomposition of the
new statistic according to orthogonal quantities reflecting several effects.

An application on real data about service quality evaluation using all the theoret-
ical results will be shown in the extended version of this paper.

2 Notations

Let A, B, andY be categorical variables withi = 1, . . . , I , k= 1, . . . ,K and j = 1. . . ,J
categories, respectively, and suppose(A1,B1,Y1), . . . , (An,Bn,Yn) is a random sam-
ple of the random vector(A,B,Y). The basic data structures in this paper are two
and three-way contingency tablesN and Ň of orders(I ,J) and (I ,K,J) with fre-
quencies{ni j } and{nik j} counting the numbers of observations that fall into the
cross-categoriesi× j andi×k× j, respectively.N cross classifiesn statistical units
according to two categorical variablesA andY while Ň according to three cate-
gorical variablesA, B, andY. TableŇ is handled in this paper in two way mode
by row unfolding it according to variablesA andB: the resulting two way contin-
gency tableÑ is then of size[(I ×K)× J] with general termnik j . We consider row
variablesA andB as predictors and the column variableY as response, reflecting a
unidirectional association between the categorical variables (rows versus column).
Moreover, suppose thatY has an ordinal nature with increasing scores.

We denote bypi j the probability of having an observation fall in thei-th row and
j-th column of the table, withP = {pi j = ni j /n}. pi. = ∑J

j=1 pi j andp. j = ∑I
i=1 pi j

denote the probabilities thatA andY are in categoriesi and j, respectively.
Considering the two way tableN, let zis = ∑s

j=1ni j and z.s = ∑s
j=1n. j be the

cumulative count and the cumulative column total up to thej-th column category,
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respectively, withs= 1, . . . ,J−1.ds = z.s/n denotes the cumulative column propor-
tion. Let P̃ = {pik j = nik j/n} be the joint relative frequency distribution. Moreover,
let DI = {pi. = ∑J

j=1 pi j } andDJ = {p. j = ∑I
i=1 pi j } be diagonal matrices contain-

ing the row and column sum ofP̃, respectively. LetDIK = diag(pik.) (marginal row)
andDJ = diag(p..J) (marginal column) be also the diagonal matrices with generic
elementspik. = ∑J

j=1 pik j andp.. j = ∑I
i=1 ∑K

k=1 pik j , respectively.
Lastly, denoteCiks = ∑s

j=1nik j with s= 1, . . . ,J−1 the cumulative frequencies
of the {ik}-th row category up to thes-th column categories. Their consideration
provides a way of ensuring that the ordinal structure of the column categories is
preserved. Similarly, denote,̃ds = ∑s

j=1 p.. j the cumulative relative frequency up to
thes-th column category.

3 The Taguchi’s statistics in a nutshell

Taguchi [6, 7] proposed a measure of the association between categorical variables
where one of them possesses ordered categories by considering the cumulative sum
of cell frequencies across this variable. He introduced this measure as a simple al-
ternative to Pearson’s test in order to consider the impact of differences between
adjacent ordered categories on the association between row and column categories.
In order to assess the unidirectional association between the row and (ordered) col-
umn variables, Taguchi [6, 7] proposed the following statistic

T =
J−1

∑
s=1

1
ds(1−ds)

I

∑
i=1

ni.

(
zis

ni.
−ds

)2

(1)

with 0 ≤ T ≤ [n(J− 1)]. This statistic performs better than Pearson’s chi-squared
statistic when there is an order in the categories on the columns of the contingency
table and it is more suitable for studies (such as clinical trials) where the number of
categories within a variable is equal to (or larger than) 5 [8].

Takeuchi and Hirotsu [8] and Nair [3] showed also that theT statistic is linked to
the Pearson chi-squared statisticT = ∑J−1

s=1 χ2
s whereχ2

s is Pearson’s chi-squared for
the I ×2 contingency tables obtained by aggregating the firsts column categories
and the remaining categories (s+1) toJ, respectively. For this reason, the Taguchi’s
statisticT is called thecumulative chi-squared statistic(hereafter CCS). Nair [3]
considers then the class of CCS-type statistics

TCCS=
J−1

∑
s=1

ws

[
I

∑
i=1

ni.

(
zis

ni.
−ds

)2
]

(2)

corresponding to a given set of weightsws > 0. The choice of different weighting
schemes defines the members of this class. Examples of possible choices forwj

are to assign constant weights to each term (i.e.ws = 1/J) or assume it propor-
tional to the inverse of the conditional expectation of thes-th term under the null
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hypothesis of independence (i.e.ws = [ds(1− ds)]−1). It is evident thatTCCS sub-
sumesT in the latter case. Moreover, Nair shows thatTCCS with ws = 1/J (that is
TN = ∑J−1

s=1(1/J)∑I
i=1Ni.(zis/ni.−ds)2) has good power against ordered alternatives.

Nair [3, 4] highlighted the main properties of the CCS-type tests by means of a
matrix decomposition of this statistic into orthogonal components. Lastly, Taguchi’s
statistics can be also viewed as an approximate sum of likelihood ratios within the
regression model for binary dependent variables following a scaled binomial distri-
bution, providing in this way a different interpretation of this statistic [2]. Refer to
[2] for a wider and deeper study with other new interpretations and characteristics
of this statistic.

4 Cumulative Correspondence Analysis and Taguchi’s Statistics
for three way contigency tables handled in two way mode

In this paper we introduce a new extension of the Taguchi’s statistic on a three-way
contingency table, where one of the variables consists of ordered responses, handled
in two way mode. We name ”Multiple Taguchi’s statistic” the following measure of
the unidirectional association between the rows and (ordered) column variables

TM =
J−1

∑
s=1

1

d̃s(1− d̃s)

[
I

∑
i=1

K

∑
k=1

nik.

(
Ciks

nik.
− d̃s

)2
]

0≤ TM ≤ n(J−1) (3)

Likewise formulas (1) and (2) it is also possible to consider a class of CCS-type
statisticsTM

CSScorresponding to a given set of weightsws > 0. The choice of different
weighting schemes defines the members of this class.

It is possible to show that there is a link between Multiple Taguchi’s statistic,
Pearson Chi-Squared statistic and C-StatisticsTM = ∑J−1

s=1 χ2(s) = n
n−1 ∑J−1

s=1 C(s).

Hereχ2(s) andC(s) = (n−1)[∑I
i=1 ∑s

j=1 pik.

(
pik j/pik. − p.. j

)2
]/(1−∑J

j=1 p2
.. j) are

the Pearson chi-squared and the C-statistics, respectively, for a[(I ×K)×2] contin-
gency table obtained by aggregating the firstj column categories and the remaining
categories( j +1) to J.

It is possible to highlight other properties by means of a matrix decomposition of
the CCS-type statisticTM

CSSinto orthogonal components. For instance, this allows to
introduce the Multiple Taguchi’s statistic at heart of a new cumulative extension of
correspondence analysis (hereafter MTA). Main goal of MTA is to show how similar
cumulative categories are with respect to joined nominal ones from a graphical point
of view. We represent the variations of column categories rather than the categories
on the space generated by cumulative frequencies. Let define the matrix

R = D−1
IK P̃ATW

1
2 (4)
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whereW is a diagonal square matrix of dimension[(J−1)× (J−1)] with general
termws andA the following[(J−1)×J] matrix

A =








1− d̃1 −d̃1 . . . −d̃1

1− d̃2 1− d̃2 . . . −d̃2
...

...
...

...
1− d̃J−1 1− d̃J−1 . . . −d̃J−1








A can be also written asA = M − [D(1J−11T
J )] whereM is unitriangular lower

matrix of dimension(J− 1)× J, D = diag(d̃s), with 1J−1 and1J column vectors
of one of dimension(J−1) andJ, respectively. The CSS-type Multiple Taguchi’s
statisticTM

CSSis then given by

TM
CSS= n×||R||2DIK

= n×||D−1
IK P̃ATW

1
2 ||2DIK

= n× trace

(

D
− 1

2
IK P̃ATWAP̃TD

− 1
2

IK

)

Let GSVD(R)DIK ,I denotes the generalized singular value decomposition of matrix
R = {rik j} of rank M such thatR = UΛVT , whereU is an [I ×M] matrix of left
singular vectors such thatUTDI U = IM, V is an[(J−1)×M] matrix of right singular
vectors such thatUTU = IM andΛ is a positive definite diagonal matrix of orderM
of singular values ofR of general termλm (m= 1, . . . ,M). Total inertia is given by

||R||2DIK
= trace(RTDIK R) =

I

∑
i=1

K

∑
k=1

J

∑
j=1

pik.r
2
ik j =

M

∑
m=1

λ 2
m =

TM
CSS

n

Finally, row and column standard coordinates for the graphical representation of the
association between predictors and response categorical variables are then given by
F = UΛ andG = VΛ, respectively.

According to the Nair’s approach [3, 4] we show how the distribution ofTM
CSS

is approximated using Satterthwaite’s method [5]. LetΓ be the(J− 1)× (J− 1)
diagonal matrix of the nonzero singular-values ofATWA and consider the singu-

lar value decompositionATW
1
2 = QΓ ZT with QTQ = I andZTZ = I such that

ATWA = QΓ 2QT . The CSS-type Multiple Taguchi’s statisticTM
CSSis given by

TM
CSS= n× trace

(

D
− 1

2
IK P̃ATWAP̃TD

− 1
2

IK

)

= n× trace

(

D
− 1

2
IK P̃QΓ 2QT P̃TD

− 1
2

IK

)

= n× trace
(
SΓ 2ST)

whereS= D
− 1

2
I P̃Q. It is possible to show that thei-th elementsSis of column vector

Ss are asymptotically iid with aN(0,1) distribution asn→ ∞, with s= 1, . . . ,J−1
and i = 1, . . . , (I ×K)− 1. Then, under the hypothesis of homogeneity and given
the row and column probabilities, the componentsST

s Ss = ∑I×K
i=1 S2

is are asymptoti-
cally iid with a χ2

[(I×K)−1] distribution. Consequently, under the null hypothesis, the

limiting distribution of the CSS-type Multiple Taguchi’s statisticTM
CSS is a linear
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combination of chi-squared distributions

TM
CSS= n× trace

(
SΓ 2ST) d

−→
H0

J−1

∑
s=1

γs× χ2
[(I×K)−1](s)

whereχ2
[(I×K)−1](s) is the chi-squared distribution for thes-th componentST

s Ss (s=
1, . . . ,J−1) andγs are elements of matrixΓ . By using Satterthwaite’s two-moment
approximation [5], the asymptotic distribution ofTM

CSS can be then approximated
[3, 4] by dM

CSS× χ2
vM
CSS

with vM
CSS= (dM

CSS)
−1 ∑J−1

s=1 γs degrees of freedom anddM
CSS=

[(I ×K)−1]−1(∑J−1
s=1 γ2

s/∑J−1
k=1 γs).

5 Orthogonal decomposition of Multiple Taguchi’s statistic

The Multiple Taguchi’s statistic is a measure of association that contains both main
effects and interaction term. The main effects represent the change in the response
variables due to the change in the level/categories of the predictor variables, con-
sidering the effects of their addition. The interaction effect represents the combined
effect of predictor categorical variables on the ordinal response variable.

The interpretation of MTA graphical results can be improved if we highlight the
impact of these effects on the association. The Multiple Taguchi’s statistic can be
then decomposed in different orthogonal quantities:

TM
CSS= TA∪B +TA×B = TA +TB|A +TA×B = TA|B +TB +TA×B

whereTA∪B reflects the main effects and represents the change in the response vari-
ables due to the change on the levels/categories of the predictor variables consid-
ering their joining effects,TA (or TB) represents the Taguchi’s statistic calculated
betweenY andA (or B) after a row aggregation of variableB (or A), while TB|A (or
TA|B) is the Taguchi’s statistic betweenY andB (or A) where the effects of vari-
able A has been partialled out (orB). Finally, TA×B is the interaction effect and
represents the combined effect of predictor variables on the response variable. In
particular, there is an interaction between two predictor variables when the effect of
one predictor variable varies as the levels/categories of the other predictor vary. If
the interaction is not significant, it is possible to examine the main effects. Instead,
if the interaction is statistically significant and of strong entity, then, it is not useful
to consider the main effects.

In order to separate the main effects and the interaction term, the approach
starts from a constraints matrix. LetTA∪B = [TA|TB] be the matrix of dummy vari-
ables withTA = (1K ⊗ I I ) (factor A), TB = (IK ⊗ 1I ) (factor B) and such that

formula (4) can be written asR = D−1
IK HT

1/DIK
P̃MTW

1
2 where H1/DIK

= I IK −

[1IK (1T
IK DIK 1IK )−11T

IK DIK ] is the orthogonal projector onto the null space of1IK

in metricDIK with 1IK unitary column vectors of dimensionIK . H1/DIK
eliminates
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the row marginal effect from the relationship between rows and columns. The main
effects are given by

RA∪B = H1/DIK
TA∪B(TT

A∪BHT
1/DIK

DIK TA∪B)−1TT
A∪BHT

1/DIK
P̃MTW

1
2

SinceRA×B = R−RA∪B then we obtain the following norm decomposition

||R||2DIK
= ||RA∪B||

2
DIK

+ ||RA×B||
2
DIK

(5)

Similarly, a double decomposition of the main effects in orthogonal quantities is

||RA∪B||
2
DIK

= ||RA||
2
DIK

+ ||RB|A||
2
DIK

= ||RB||
2
DIK

+ ||RA|B||
2
DIK

(6)

whereRA = H1/DIK
TA(TT

AHT
1/DIK

DIK TA)−1TT
AHT

1/DIK
PMTW

1
2 andRB = H1/DIK

TB

(TT
BHT

1/DIK
DIK TB)−1TT

BHT
1/DIK

PMTW
1
2 . Decomposition (6) shows thatA∪ B 6=

(A+ B) becauseA∪B = (A+ B|A) = (B+ A|B) sinceA andB are not orthogonal
factors [9]. If we consider a balanced design then we haveRA|B = RA andRB|A = RB

so that we can write||RA∪B||2DIK
= ||RA||2DIK

+ ||RB||2DIK
and decomposition (5) is

now ||R||2DIK
= ||RA||2DIK

+ ||RB||2DIK
+ ||RA×B||DIK .

Table 1 Multiple Taguchi’s statisticdecomposition

Decomposition Index d̃ Statistic degrees offreedom

Main effects TA∪B d̃A∪B =

(
1

d̃A + 1
d̃B|A

)−1

TA∪B/d̃A∪B vA∪B = 1
d̃A∪B ∑J−1

s=1 γs

Interaction TA×B d̃A×B =

(
1

d̃M − 1
d̃A − 1

d̃B|A

)−1

TA×B/d̃A×B vA×B = 1
d̃A×B ∑J−1

s=1 γs

Total TM
CSS d̃M

CSS= 1
[(I×K)−1]

∑J−1
s=1 γ2

s

∑J−1
s=1 γs

TM
CSS/d̃M

CSS vM
CSS= 1

d̃M
CSS

∑J−1
s=1 γs

Table 2 AlternativeTA∪B decompositions

Decomposition Index d̃ Statistic degrees offreedom

FactorA TA d̃A = 1
(I−1)

∑J−1
s=1 γ2

s

∑J−1
s=1 γs

TA/d̃A vA = 1
d̃A ∑J−1

s=1 γs

Factor A|B TA|B d̃A|B = 1
(I−1)

∑J−1
s=1 γ2

s

∑J−1
s=1 γs

TA|B/d̃A|B vA|B = 1
d̃A|B ∑J−1

s=1 γs

FactorB TB d̃B = 1
(K−1)

∑J−1
s=1 γ2

s

∑J−1
s=1 γs

TB/d̃B vB = 1
d̃B ∑J−1

s=1 γs

Factor B|A TB|A d̃B|A = 1
(K−1)

∑J−1
s=1 γ2

s

∑J−1
s=1 γs

TB|A/d̃B|A vB|A = 1
d̃B|A ∑J−1

s=1 γs

Let R(A∪B) = UA∪BΛA∪BVT
A∪B denoteGSVD(RA∪B)DIK ,I whereUA∪B is an(I ×

M) matrix of right singular vectors such thatUT
A∪BDIK UA∪B = IM [M = rank(RA∪B)],
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VA∪B is [(J−1)×M] matrix of right singular vectors such thatVT
A∪BVA∪B = IM and

Λ is a positive definite diagonal matrix of orderM of singular value ofRA∪B with
general termλ A∪B

m with m= 1, . . . ,M. Row and column standard coordinates of the
main effects are given byFA∪B = UA∪BΛA∪B andGA∪B = VA∪BΛA∪B, respectively.
It’s also possible to plot the interaction term and the single effects in the same way.

6 Conclusion

Taguchi introduced his statistic as simple alternative to Pearson’s chi-squared test
for two way contingency tables. Actually,χ2 does not perform well when we have a
contingency table cross-classifying at least one ordinal categorical variable. In this
paper an extension of this statistic for three way contingency tables handled in two
way mode has been introduced highlighting some properties. The approximated dis-
tribution of the CCS-type Multiple Taguchi’s statisticTM

CSS, by using Satterthwaite’s
method, has been also suggested. In this paper, an extension of Correspondence
Analysis based on the decomposition of the CCS-type Multiple Taguchi’s statistic
has been moreover proposed. The interpretation of the graphical results has been
improved highlighting the impact of the main effects and the interaction terms on
the association. This is obtained with a decomposition of statisticTM

CSSaccording to
orthogonal quantities reflecting several effects.
Finally, an extended version of this paper will include an application on real data
about service quality evaluation. All the theoretical results will be used showing
also the graphical outputs. We will be also able to evaluate the impact of the main
effects and interaction term on association among the categorical variables.
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