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Abstract In this paper we introduce the literature on regression models with tensor
variables and present a Bayesian linear model for inference, under the assumption
of sparsity of the tensor coefficient. We exploit the CONDECOMP/PARAFAC (CP)
representation for the tensor of coefficients in order to reduce the number of pa-
rameters and adopt a suitable hierarchical shrinkage prior for inducing sparsity. We
propose a MCMC procedure via Gibbs sampler for carrying out the estimation, dis-
cussing the issues related to the initialisation of the vectors of parameters involved
in the CP representation.
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1 Bayesian Tensor Regression Model

Define a tensor as a generalisation of a matrix into a D-dimensional space, namely:
X ∈Rd1×...×dD , where D is the order of the tensor and d j is the length of dimension
j. Matrices, vectors and scalars are particular cases of tensor variables, of order 2,
1 and 0, respectively. The common operations defined on matrices and vectors in
linear algebra can be applied also to tensors via generalisations of their definition.
For a remarkable survey on this subject, see [5].

The general tensor linear regression model (see [1], [2] for greater details) we
present here can manage covariates and response variables in the form of vectors,
matrices or tensors. It is given by:
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Yt =A +B×D+1 vec(Xt)+C ×D+1 zt +D×nWt +Et , Et
iid∼Nd1,...,dD(0,Σ1, . . . ,ΣD)

(1)
where the tensor response and errors are given by Yt , Et ∈ Rd1×...×dD ; while the
covariates are Xt ∈RdX

1 ×...×dX
M , Wt ∈Rdn×dW

2 and zt ∈Rdz . The coefficients are: A ∈
Rd1×...×dD , B ∈ Rd1×...×dD×p, C ∈ Rd1×...×dD×dz , D ∈ Rd1×...×dn−1×dW

2 ×dn+1...×dD

where p = ∏i dX
i . The symbol ×n stands for the mode-n product between a tensor

and a vector, as defined in [5]. This model extends several well-known econometric
linear models, among which univariate and multivariate regression, VAR, SUR and
Panel VAR models and matrix regression model (see [1] for formal proofs).

We focus on the particular case where both the regressor and the response vari-
ables are square matrices of size k×k and the error term is assumed to be distributed
according to a matrix normal distribution:

Yt = B×3 vec(Xt)+Et Et
iid∼Nk,k(0,Σc,Σr). (2)

To significantly reduce the number of parameters we assume a CONDECOM/PARAFAC
(CP) representation (more details in [5]) for the tensor. Let the vectors β

(r)
j ∈ Rd j ,

j = 1, . . . ,D, also called marginals of the CP representation, and R be the CP-rank
of the tensor (assumed known and constant), then:

B =
R

∑
r=1

B(r) =
R

∑
r=1

β
(r)
1 ◦ . . .◦β

(r)
D , (3)

2 Bayesian Inference

We follow the Bayesian approach for inference, thus we need to specify a prior dis-
tribution for all the parameters of the model. The adoption of the CP representation
for the tensor of coefficients is crucial from this point of view, as it allows to re-
duce the problem of specifying a prior distribution on a multi-dimensional tensor,
for which very few possibilities are available in the literature, to the standard mul-
tivariate case. Building from [3], we define a prior for each of the CP marginals of
the tensor coefficient B by means of the following hierarchy:

π(β
(r)
j |W,φ ,τ)∼Nd j(0,τφrWj,r) ∀r ∀ j (4)

π(wp, j,r)∼ E xp(λ 2
j,r/2) ∀r ∀ j ∀ p (5)

π(τ)∼ G a(aτ ,bτ) π(φ)∼D ir(αφ ) π(λl)∼ G a(aλ ,bλ ) ∀ j ∀r . (6)

We complete the prior specification by assuming a hierarchical prior for the covari-
ance matrices:

Σ1|γ ∼I W (γΨ1,ν1) Σ2|γ ∼I W (γΨ2,ν2) γ ∼ G a(aγ ,bγ) . (7)

Given a sample (Y,X) = {Yt ,Xt}T
t=1 and defining xt := vec(Xt), the likelihood func-

tion of the model (2) is given by (see [1] for details of the Gibbs sampler):
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L
(
Y,X|θ

)
=

T

∏
t=1

(2π)−
k2
2 |Σ2|−

k
2 |Σ1|−

k
2 exp

{
−1

2
Σ
−1
c (Yt −B×3 xt)

′
Σ
−1
1 (Yt −B×3 xt)

}
.

(8)

3 Simulation and Application

We performed a stimulation study by drawing a sample of T = 60 couples {Yt ,Xt}t
of square matrices of size varying from 10 to 50. The regressor is built by entry-wise
independent Gaussian AR(1) processes with unitary noise variance. We initialised
the marginals of the tensor B by simulated annealing and run the Gibbs sampler for
N = 3000 iterations. Fig. 1 shows the estimated coefficient tensor against the true
(matricized form), for sizes 10 to 50. The plots suggest good performance of the
proposed sampler in recovering the true value of the parameter, with slight tendence
to overshrink, as common for local-global priors. See [1] for more details.

Fig. 1 Logarithm of the absolute
value of the coefficient tensors:
true B (top) and estimated B̂
(bottom). Sizes 10× 10 (left) to
50×50 (right).

Denote vecr(·) the reverse vectorization operator and Ẽ a binary matrix of unit
shocks. We study the effects of the propagation of a shock via the matrix-valued
impulse response function obtained as:

Yh = vecr
(
[B′(3)]

h ·vec
(
Ẽ
))

. (9)

We apply the model to the study of T = 13 yearly international trade networks of
size 10× 10, with Xt = Yt−1. The results are in Fig. 2. The estimated coefficient
tensor (104 entries) is rather sparse, with some regular patterns indicating that the
trade flows depend on their past and on the “neighbouring” countries. The covari-
ance matrices indicate higher values of the variances with respect to cross-sectional
covariances. Fig. 3 shows the impulse response functions obtained by shocking the
10 most and 10 least relevant edges, respectively, and show significant level of prop-
agation in space and persistence in time of the shock, with different magnitudes in
the two cases.4 Conclusions

We propose a matrix linear regression model (a reduced form of a tensor regression)
which extends standard econometric models and allows each entry of the covariate
to exert a different effect on each entry of the response. We exploit the PARAFAC
decomposition to reduce the parameter space and follow a Bayesian approach to
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Fig. 2 Mode-3 matricization of
the estimated coefficient tensor
(left); estimated error covari-
ance matrices: Σ1 (left) and Σ2
(right). -0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 3 Impulse response for h =
1, . . . ,5 periods. Unitary shock on
the 10 most (top row) and least
(bottom row) relevant edges (sum
of absolute values of all coeffi-
cients). Countries’ labels on axes.

inference by means of a hierarchical local-global priors to allow efficient estimation
of large sparse tensor coefficients. The accuracy of the model has been successfully
tested both on synthetic and a real datasets, allowing the efficient estimate of large
coefficient tensor.
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