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Abstract The goal of statistical matching is the estimation of the joint distribution
of variables not jointly observed in a sample survey but separately available from
independent sample surveys. The lack of joint information on the variables of inter-
est leads to uncertainty about the data generating model. In this paper we propose
the use of Bayesian networks to deal with the statistical matching problem since
they admit a recursive factorization of a joint distribution useful for evaluating the
statistical matching uncertainty in the multivariate context.
Abstract Lo scopo dello statistical matching è stimare una distribuzione congiunta
di variabili osservate separatamente in due campioni indipendenti. La mancanza di
osservazioni congiunte sulle variabili di interesse causa incertezza sul modello che
ha generato i dati: l’informazione campionaria non è in grado di discriminare tra un
insieme di modelli plausibili. In questo lavoro il problema dello statistical match-
ing è analizzato utilizzando le reti Bayesiane che consentono non solo di descrivere
la struttura di dipendenza in distribuzioni multivariate ma ammettono una fattoriz-
zazione della distribuzione congiunta utile ai fini della valutazione dell’incertezza.
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1 Introduction

Statistical matching aims at combining information obtained from different non-
overlapping sample surveys, referred to the same target population. The main target
is in constructing a complete synthetic data set where all the variables of interest are
jointly observed, see [3].

Formally, let (X ,Y ,Z) be a random variable (rv) with joint discrete distribu-
tion P. Without loss of generality, let X = (X1, . . . ,XH), Y = (Y1, . . . ,YK) and
Z = (Z1, . . . ,ZT ) be vectors of rvs of dimension H, K, T , respectively. Furthermore,
let A and B be two independent samples of nA and nB independent and identically
distributed records from (X ,Y ,Z). Assume that (X ,Y ) are observed in sample A
while (X ,Z) are observed in sample B. The main goal of statistical matching con-
sists in estimating the joint distribution of (X ,Y ,Z) from the samples A and B. Such
a distribution is not identifiable due to the lack of joint information on Z and Y given
X .

In order to overcome this problem, the following approaches have been consid-
ered. The first approach uses techniques based on the conditional independence as-
sumption between Y and Z given X (henceforth CIA assumption) see, e.g., [9]. The
second approach uses techniques based on external auxiliary information regarding
the statistical relationship between Y and Z , e.g. an additional file C where (X ,Y ,Z)
are jointly observed is available, as in [12].

However, it is possible that neither case is appropriate, then the third group of
techniques addresses the so called identification problem. The lack of joint infor-
mation on the variables of interest is the cause of uncertainty about the model of
(X ,Y ,Z). In other terms, the sample information provided by A and B is actually
unable to discriminate among a set of plausible models for (X ,Y ,Z). For instance,
in a parametric setting and for K = T = 1 the estimation problem cannot be ”point-
wise”, only ranges of values containing all the pointwise estimates obtainable by
each model compatible with the available sample information can be detected. Such
intervals are uncertainty intervals. Uncertainty in statistical matching is analyzed in
[8],[11], [4],[1] and [2].

In this paper we propose the use of Bayesian networks (BNs) to deal with statis-
tical matching in the identification problem framework for multivariate categorical
data. The first attempt in such direction is in [5] where the CIA is assumed.

The use of BNs is motivated by the following advantages: (i) BNs are widely
used to describe dependencies among variables in multivariate distributions; (ii)
BNs admit convenient recursive factorizations of their joint probability useful for
the uncertainty evaluation in a multivariate context.

The paper is organized as follows. In section 2 the concept of uncertainty in
statistical matching when BNs are used is discussed.
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2 Uncertainty in Statistical Matching using graphical models

BNs are multivariate statistical models satisfying sets of conditional independence
statements contained in a directed acyclic graph (DAG), see [10]. The network con-
sists of two components: the DAG where each node corresponds to a random vari-
able, while edges represent direct dependencies; the set of all parameters in the
network. For instance, with regard to the random vector X = (X1, . . . ,XH), a BN
encodes the joint probability distribution of X by specifying: (i) the set of condi-
tional independence statements by means of a DAG and (ii) the set of conditional
probability distributions associated to the nodes of the graph. The joint probability
distribution can be factorized according to the DAG as follows

P(X1, . . . ,XH) =
H

∏
h=1

P(Xh|pa(Xh))

where P(Xh|pa(Xh)) is the probability distribution associated to node Xh given its
parents pa(Xh), h = 1, . . . ,H. Given two nodes Xh′ and Xh, linked by an arrow point-
ing from to Xh′ to Xh, Xh′ is said parent of Xh, and Xh is said child of Xh′ . We say
that two vertices Xh and Xh′ are adjacent if there is an edge connecting them. Let
f a(Xh) = Xh

⋃
pa(Xh) then the clan of Xh is defined as clan(Xh) = f a(Xh

⋃
ch(Xh))

where ch(Xh) is the set of all children of Xh.
The non identifiability of a statistical model for (X ,Y ,Z) implies that both the

DAG and its parameters can not be estimated from the available sample informa-
tion. Two kinds of uncertainty can be distinguished: 1) uncertainty regarding the
DAG, that is the dependence structure between the variables of interest; 2) uncer-
tainty regarding the network parameters, given the DAG, i.e. the joint probability
factorization.

2.1 Uncertainty in the dependence structure

Let P be the joint probability distribution of (X ,Y ,Z) associated to the DAG GXY Z =
(V,E) consisting of a set of vertices V and a set E of directed edges between pairs
of nodes. Let us denote by GXY = (VXY ,EXY ) and GXZ = (VXZ ,EXZ) the DAGs
estimated on sample A and B, respectively. As in [5] GXY and GXZ are estimated
subject to the condition that the association structure of the common variables X is
fixed. In particular, the DAG GX is estimated on the overall sample A

⋃
B. Given

GX , we proceed to estimate the association structure between (X ,Y ) and (X ,Z) on
the basis of sample data in A and B, respectively.

As far as P is concerned, unless special assumptions are made, one can only say
that it lies in the class of all joint probability distributions for (X ,Y ,Z) satisfying
the estimate collapsibility over Y and Z, respectively. Formally, we say that the joint
probability distribution P is estimate collapsible over Zt if
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P̂(X ,Y ,Z\{Zt}) = P̂GXY Z\{Zt }
(X ,Y ,Z\{Zt}). (1)

That is, the estimate P̂(X ,Y ,Z\{Zt}) of P(X ,Y ,Z\{Zt}) obtained by marginaliz-
ing the maximum likelihood estimate (MLE) of P̂(X ,Y ,Z) under the original DAG
model (GXY Z ,P) coincides with the MLE under the DAG model (GXY Z\{Zt}), see
[7]. Estimate collapsibility over a set Z is defined similarly. In terms of graphs a
concept equivalent to estimate collapsibility is the c-removability. A vertex Zt is
c-removable from GXY Z if any two vertices in clan(Zt) are adjacent, except when
both vertices belong to pa(Zt). Further, the set Z = (Z1, . . . ,ZT ) is sequentially c-
removable if all vertices in Z can be ordered so that they can be c-removed according
to that ordering. An analogous condition is required for the estimate collapsibility
over Y . The class of plausible joint distributions for (X ,Y ,Z) can be described as
follows

PXY Z = {P : P̂(X ,Y ) = P̂GXY (X ,Y ), P̂(X ,Z) = P̂GXZ (X ,Z)} (2)

or equivalently by using the graph of the model structure, the class can also be
defined as the class of plausible DAGs GXY Z where the variables Z and Y are re-
movable, respectively. Formally

GXY Z = {GXY Z : Z is removable, Y is removable} (3)

The most favorable case, that for instance happens under CIA, occurs when
the class (2) is composed by a single joint probability distribution defined as
P(X ,Y ,Z) = P(X)P(Y |X)P(Z|X). In an equivalent manner, this means that the class
(3) collapses into a single graph given by GCIA

XY Z = GXY
⋃

GXZ where Y and Z are
d-separated by the set X . Note that such a network always belongs to the class (3).
Under the CIA, both the dependence structure and the BN parameters are estimable
from the sample data.

Clearly, when the CIA does not hold, in order to choose a plausible DAG from
the class GXY Z , it is important to have extra-sample information on the dependence
structure. This is generally available or can be elicited by experts. As stressed in [6],
qualitative dependencies among variables can often be asserted with confidence,
whereas numerical assessments are subject to a great deal of hesitacy. For example,
for K = T = 1 an expert may willingly state that the variable Y is related to variable
Z, however he/she would not provide a numeric quantification of this relationships.

2.2 Uncertainty in the parameter estimation

Suppose that a DAG G∗XY Z has been selected from the class GXY Z . Let P∗ the joint
probability distribution associated to G∗XY Z . According to G∗XY Z the distribution P∗

can be factorized into local probability distributions some of which can be estimated
from the available sample information while other not. In the case of categorical
variables, uncertainty is dealt with in [4] where parameters uncertainty is estimated
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according to the maximum likelihood principle. The parameter estimate maximizing
the likelihood function is not unique and the set of maximum likelihood estimates
is called likelihood ridge.

Assume that, Xh, Yk and Zt are discrete rvs with I, J and L categories, respectively
and that their joint distribution is multinomial with vector parameter θ ∗ = {θ ∗i jl}, for
i = 1, . . . , I, j = 1, . . . ,J, and l = 1, . . . ,L. Suppose that from the factorization of P∗,
the unique parameter that can not be estimated is the joint probability P(Xh,Yk,Zt).
Analogously to (2), as far as θ ∗ is concerned, one can only say that it lies in the
following set:

Θ
∗ = {θ ∗ : ∑

l
θ
∗
i jl = θ̂i j.,∑

j
θ
∗
i.l = θ̂i.l ,θ

∗
i jl ≥ 0,∑

i jl
θ
∗
i jl = 1} (4)

where

θ̂i j. =
nA

i j.

nA
i..

nA
i..+nB

i..
nA +nB

, θ̂i.l =
nA

i.l

nA
i..

nA
i..+nB

i..
nA +nB

(5)

are the marginal distribution ML estimates of (Xh,Yk) and (Xh,Zt) from samples A
and B, respectively. The maximum of the observed likelihood in θ ∗i jl is not unique,
all the distributions in the likelihood ridge are equally informative, given the data.
For details, see [4].

In order to exclude some parameter vectors in Θ ∗ it is important to introduce
constraints characterizing the phenomenon under study. These constraints can be de-
fined in terms of structural zero (θ ∗i jl = 0 for some (i, j, l)) and inequality constraints

between pairs of distribution parameters (θ ∗i jl < θ ∗
i′ j′ l′

for some (i, j, l),(i
′
, j
′
, l
′
)).

Their introduction is useful for reducing the overall parameter uncertainty. Clearly,
the amount of reduction depends on the informativeness of the imposed constraints.
The problem of the likelihood function maximization when constraints are imposed
may be solved through a modified EM algorithm, see [13].

Example Suppose that an expert can elicit the association structure between the
variables of interest (X1,Y1,Y2,Z1,Z2). The BN is reported in Figure 1. Note that,
Y = (Y1,Y2) is sequentially c-removable according to the ordering (Y1,Y2), and Z =
(Z1,Z2) is sequentially c-removable according to the ordering (Z1,Z2).

The joint distribution P can be factorized according to the graph as follows

P(X ,Y ,Z) = P(Z1)P(X1|Z1)P(Y1|X1)P(Z2|X1,Z1)P(Y2|X1,Z1,Z2) (6)

The parameter P(Y2|X1,Z1,Z2) can not be estimated from the sample available in-
formation in A and B. Nevertheless, such a distribution can be estimated follow-
ing the approach described in Section 2.2 using an iterative procedure starting by
P(Z1,Y2|X1) and ending with P(Y2,Z2|X1,Z1).

Clearly, the larger is the number of directed edges between the components of Y
and Z, the larger is the number of uncertain parameters needed to be estimated in
the factorization of the joint distribution P∗.
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Fig. 1 BN for (X1,Y1,Y2,Z1,Z2)
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