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Abstract The joint models analyse the effect of longitudinal covariates onto the risk
of an event. They are composed of two sub-models, the longitudinal and the survival
sub-model. For the longitudinal sub-model a multivariate mixed model can be pro-
posed. Whereas for the survival sub-model, a Cox proportional hazards model is
proposed, considering jointly the influence of more than one longitudinal covariate
onto the risk of the event. The purpose of the work is to extend an estimation method
based on a joint likelihood formulation to the case in which the longitudinal sub-
model is multivariate through the implementation of an Expectation-Maximisation
(EM) algorithm.
Abstract I modelli congiunti analizzano l’effetto delle covariate longitudinali sul
rischio di un evento. Sono composti da due sotto-modelli, quello longitudinale e
quello di sopravvivenza. Per il sotto-modello longitudinale si puó proporre un mod-
ello misto multivariato, mentre per quello di sopravvivenza viene proposto un mod-
ello a rischi proporzionali di Cox, dove le covariate longitudinali influenzano con-
giuntamente il rischio dell’evento. Lo scopo del lavoro é di estendere un metodo
di stima basato sulla massimizzazione della verosimiglianza congiunta al caso in
cui il sotto-modello longitudinale è multivariato attraverso l’implementazione di un
algoritmo Expectation-Maximization (EM).
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1 Introduction

The joint models analyse the effect of longitudinal covariates onto the risk of an
event. They are composed of two sub-models, the longitudinal and the survival sub-
model. For the longitudinal sub-model a multivariate mixed model can be proposed,
considering fixed and random effects. Whereas for the survival sub-model, a Cox
proportional hazards model is usually proposed, considering jointly the influence of
more than one longitudinal covariate onto the risk of the event.
The joint models are often used in medical research because in clinical trails the aim
is to analyse two subgroups, placebo and treated, in order to study the longitudinal
covariates that could influence the survival time.
The first authors that extended the joint model to the case in which the longitudi-
nal sub-model is multivariate are Xu and Zeger [10]. A Markov chain Monte Carlo
algorithm was used to estimate parameters in the model, extending the univariate
estimation method introduced by Xu and Zeger [11] and Faucett and Thomas [2].
The authors applied the model and the estimation method to the Schizophrenia trial
data of risperidone. Albert and Shih [1] proposed a regression calibration approach
for jointly modelling multiple longitudinal measurements and discrete time-to-event
data. The authors proposed a two-stage regression calibration approach. Recently
Hickey et al. [5] proposed a interesting review of all the model and estimation meth-
ods for the joint modelling of time-to-event and multivariate longitudinal outcomes.
Despite developments, software to estimate the parameters of these model is still
lacking. For this reason, Hickey et al. [4] implemented a new package in software
R, the joineRML package. This package fits the joint model proposed by Hender-
son et al. [3], extended to the case of multiple continuous longitudinal measures.
The association between time-to-event and longitudinal data is captured by a mul-
tivariate latent Gaussian process. The parameter are estimated using a Monte Carlo
Expectation Maximization algorithm.
The purpose of the paper is to extend an estimation method based on a joint likeli-
hood formulation used in the univariate case [6] to the case in which the longitudinal
sub-model is multivariate. The parameters are estimated maximising the likelihood
function, using an Expectation-Maximisation (EM) algorithm. In addition, in the M-
step a one-step Newton-Raphson update is used, as for some parameters estimators,
it is not possible to obtain closed-form expression. In addition, a Gauss-Hermite
approximation is applied for some of the integrals involved.

2 Model and estimation method

The longitudinal and the survival sub-models compose the joint models. Concerning
the survival sub-model, in this paper a proportional hazard model is used, which is
defined as a function of the miq(t) that denotes the true and unobserved value of the
longitudinal covariate q for subject i:
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hi(t|Mi(t),ωi) = h0(t)exp

[
γ
′
ωi +∑

q
αqmiq(t)

]
(1)

where Mi(t) = {miq(s),0 ≤ s < t,∀q = 1, . . . ,Q} indicates the history of the true
unobserved longitudinal processes up to time t, αq quantifies the effect of the lon-
gitudinal outcome q onto the risk of an event, h0(t) indicates the baseline hazard
function, and ωi are the covariates that influence the risk of the event with coeffi-
cient γ . Concerning the longitudinal sub-model, a linear multivariate mixed model
is proposed:

yiq(t) = miq(t)+ εiq(t) (2)

where q is the longitudinal variable index, yiq(t) is composed by the miq(t) =
x′iq(t)βq + z′iq(t)biq and by a random error term εiq(t) ∼ N(0,σ2), and βq are the
fixed effects for xiq(t), while biq are the random effects for ziq(t). In addition,
b′i = (b′1q, ...,b

′
iQ)∼ N(0,D) and b1q, ...,bnQ and ε1q, ...,εnQ are independent.

There are two classes of estimation method, the two-stage approach and the joint
likelihood formulation. The two-stage approach is biased but less computationally
demanding, while the joint likelihood is more efficient but computationally slower.
The two-stage approach is based on two steps. In the first one the random effects are
estimated using a least-squares approach, while in the second step the estimates pre-
viously found are used to impute appropriate values of miq(t) that are substituted in
the classical partial likelihood of the Cox model. The joint likelihood could be based
on maximum likelihood, a Bayesian estimation of joint models using MCMC, or
some hypothesis concerning the normal distribution of random effects or of covari-
ates. Rizopoulos [6] proposed a new method of estimation based on the joint likeli-
hood formulation, maximising the log-likelihood function through the Expectation-
Maximisation (EM) and the Newton-Raphson algorithm.
The aim of the paper is to extend this method of estimation [6], to the case in which
the longitudinal sub-model is multivariate. Starting from the classical log-likelihood
equation, for each subject i it can be defined as:

log p(Ti,δi,yi;Θ) = log
∫

p(Ti,δi,yi,bi;Θ)dbi

= log
∫

p(Ti,δi|bi;θt ,β )

{
∏

q
p(yiq|biq;θy)

}
p(bi,θb)dbi

where Θ = (θ ′t ,θ
′
y,θ
′
b)
′ denotes the full parameter vector, with θt denoting the pa-

rameters for the event time outcome, θy the parameters for the longitudinal out-
comes, and θb the unique parameters of the random-effects covariance matrix. In
formula, θy = [β ′,σ2] where β = [β1, ...,βq, ...,βQ] and σ2 = [σ2

1 , , ...,σ
2
q , ...,σ

2
Q];

θt = [γ ′,α1, ...,αq, ...,αQ,θh0 ] where θh0 is used in the case in which the baseline
hazard is parametric; and θb = [vech(D)]. It is possible to separate the log-likelihood
in three parts, where each part is related only to a part of the vector of parameters
involved.
For maximising the log-likelihood function the Expectation-Maximisation (EM) al-
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gorithm is used where the random effects are treated as ”missing data”. Accord-
ingly, for the E-step the expected value of the complete data log-likelihood function
considering the random effects as the missing data is considered. A numerical in-
tegration procedures must be employed as an integral with respect to the random
effects is employed, such as Guass-Hermite quadrature rule.
In the M-step it is possible to obtain the estimation for σ2

q and D in closed form
solution. For the others parameters there is not a close solution, so it is necessary to
use one-step Newton-Raphson update:

β̂
it+1 = β̂

it −
{

∂

∂β
S(β̂ it)

}−1

S(β̂ it) ; θ̂
it+1
t = θ̂

it
t −

{
∂

∂θt
S(θ̂ it

t )

}−1

S(θ̂ it
t )

where β̂ it and θ̂ it
t denote the values of β and θt at the current iteration. In addition,

S(β̂ it) and S(θ̂ it
t ) denote the corresponding blocks of the Hessian matrix, evaluated

at β̂ it and θ̂ it
t , respectively. For the evaluation of the blocks of the Hessian matrix,

the numerical derivative routine is used.
At convergence the standard errors are evaluate with the empirical information ma-
trix [7]:

Ie(θ) =
n

∑
i=1

sis′i−n−1

(
n

∑
i=1

si

)(
n

∑
i=1

si

)′
(3)

where si =
∂ li(θ)

∂θ
.

We implemented the algorithm in R software. The outline of the algorithm follows
the points:

1. The initial values are estimated through the two-stage approach.
2. In the E-step the expected value of the complete data log-likelihood function

is used considering the random effects as the missing data using, in addition,
Guass-Hermite quadrature rule

3. In the M-step, for σ2
q and D it is possible to obtain closed form solution, while for

the parameter γ , αq and βq a one-step Newton-Raphson update is implemented.
Random effects and the baseline hazard are updated.

4. Iterate between step 2 and 3 until the algorithm converges, when the parameter
estimates become stable.

5. At convergence, the standard errors for each parameter are calculated using em-
pirical information matrix.

3 Application to Primary Biliary Cirrhosis dataset

We apply the algorithm to the primary biliary cirrhosis dataset (PBCSEQ) that is
available from the package Survival in R [9]. The dataset established from Mayo
Clinic consists of 312 clinical trial patients with primary biliary cirrhosis [8] fol-
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lowed up from 1974 to 1986. For each patient multiple laboratory results were col-
lected at each visit of the follow-up. After analysing several possible models, two
longitudinal covariates are considered: the level of serum bilirubin in mg/dl (ser-
Bilir), and the level of albumin in mg/dl (albumin). The observational time is ex-
pressed in days. In the survival sub-model, the exogenous covariate patient’s age at
registration in years (age) is analysed. Accordingly the longitudinal and the survival
sub-models used are: yi1(t) = β01 +β11t +bi01 +bi11t + εi1(t)

yi2(t) = β02 +β12t +bi02 +bi12t + εi2(t)
hi(t) = h0(t)exp[α1mi1(t)+α2mi2(t)+ γ1age]

where yi1(t) is the log(serBilir) and yi2(t) is the albumin.
The results obtained using the new algorithm implemented are shown in Table 1,
where every parameter results to be statically significant.

Table 1 Results of the joint model on PBCSEQ dataset

Parameter Est. SE p-value

α1 (log(serBilir) ) 1.1700 0.1052 < 0.0001
α2 (albumin ) -1.8784 0.1557 < 0.0001
γ1 (age) 0.0510 0.0075 < 0.0001
β01 (Intercept) 0.6371 0.0134 < 0.0001
β11 (Time) 0.0005 8.3434∗10−06 < 0.0001
β02 (Intercept) 3.5345 0.0201 < 0.0001
β12 (Time) -0.0003 1.1751∗10−05 < 0.0001

Log-likelihood -2957.639

In particular, the log(serBilir) affects positively the risk of death (a one point in-
crease in the log(serBilir) is associated with a 3.2220 (= exp(1.1700)) fold increase
in the risk of death), while the albumin affects negatively the risk of death (a one
point increase the albumin will give a 0.1528 (= exp(−1.8784)) fold decrease in the
risk of death). Moreover the exogenous variable, age, affects positively the risk of
death (one point increase in age gives a 1.0523 (= exp(0.0510)) fold increase in the
risk of death). Analysing the longitudinal sub-models, the observational time affects
positively (β11 = 0.0005) the level of log(serBilir), on the contrary it is negatively
associated (β12 =−0.0003) with the level of albumin.

4 Conclusions and ideas of further work

The aim of the paper is to extend the maximum likelihood estimation method pro-
posed by Rizopoulos [6] to the case in which the longitudinal sub-model is multi-
variate. We presented the algorithm and applied it to the PBCSEQ dataset.
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The results are encouraging and deal to several ideas of future work. Developing,
for instance, deeper diagnostic analysis and dynamic predictions. Another idea for
further work is extending the survival sub-model, studying the joint effect of more
than one longitudinal covariate on more than one terminal event.
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