
A test for variable importance
Sulla scelta di variabili esplicative rilevanti

Rosaria Simone

Abstract Statistical literature is being more and more concerned with debates about
hypothesis testing and p-values supporting the significance of a given variable spec-
ification. Specifically, if on one hand statistical foundations about significance are
not arguable, scholars should be able to distinguish between significance and vari-
able importance. This is a matter of serious concern in questionnaire analysis to
derive respondents’ profiles and develop targeted marketing strategies, for instance.
To this aim, this contribution proposes a hypothesis system that considers the nor-
malized dissimilarity measure to assess the importance of explanatory variables in
the setting of mixture models for ordinal data to account for uncertainty of choice.
Abstract Un dibattito sempre più presente nella letteratura statistica moderna
riguarda lo studio della effettiva importanza di covariate significative rispetto
ai risultati dei classici test di ipotesi e tecniche di selezione del modello. Se
l’applicazione delle procedure standard non è in discussione, d’altra parte la dis-
tinzione tra variabili significative e variabili rilevanti assume un ruolo fondamen-
tale ai fini decisionali. Tale problematica è di particolare rilievo nell’dei dati prove-
nienti da questionari, ad esempio per la profilazione dei consumatori al fine di in-
dividuare specifiche strategie di marketing. In questo contesto, un sistema di ipotesi
basato su una misura di dissimilarità viene proposto per testare la rilevanza di vari-
abili esplicative nel caso di una classe di misture per dati ordinali.
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1 Motivations

The opening lines of [3] invite readers to critically use p-values in the era of big
data:

There is growing frustration with the concept of the p-value. Besides having an ambiguous
interpretation, the p-value can be made as small as desired by increasing the sample size,
n. The p-value is outdated and does not make sense with big data: Everything becomes
statistically significant.

The purpose of this contribution is to investigate such concern and propose a
methodology for variable selection in the setting of statistical models for rating data.
Our discussion stems from a well consolidated idea to measure separation of prob-
ability distributions relying on the concept of Gini’s Transvariation [5] which has
been applied in several circumstances (see [1], for instance). Departing from the

identity: min(a,b) =
1
2
(
a+ b− |a− b|

)
, an inverse indicator of how far apart two

(discrete) probability distributions p = (p1, . . . , pm)
′
,q = (q1, . . . ,qm)

′
are, is given

by:
m

∑
r=1

min(pr,qr) = 1− 1
2

m

∑
r=1
|pr−qr|. (1)

This is a measure of their overlapping. For instance, consider the conditional distri-
butions of a discrete response given a dichotomous factor (dashed lines joining mass
probabilities are chosen to enhance visualization in Figure 1). Albeit statistically
significant differences are found, the discrimination of response patterns becomes
more meaningful from left to right as the overlapping gets smaller.
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Fig. 1 Visualization of overlapping between discrete probability distributions

As an application of how this measure could work in discriminating significant
covariates for a given ordinal response, here the focus will be on CUB models [2].
The original paradigm is the weighted combination of a (shifted) Binomial distribu-
tion gr(ξi) for the feeling component and a (discrete) Uniform for the uncertainty
component, meant as the fuzziness derived from the discretization of the continuous
latent perception. For a sample (R1, . . . ,Rn) of ordinal responses, say on the support
{1, . . . ,m} for a given m > 3, a CUB regression model is specified via:
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Pr(Ri = r|yi,wi) = πi gr(ξi)+(1−πi)
1
m
, (2)

where feeling ξi and uncertainty πi parameters are linked to values of subjects’
covariates wi,yi by a logit link:

logit(ξi) =wiγ, logit(πi) = yiβ.

This full model specification is customarily abbreviated as CUB (p,q), where γ
′
=

(γ0, . . . ,γq)
′
,β
′
= (β0, . . . ,βp)

′
are the estimable parameters: when p = q = 0, then

model fitting assumes constant feeling ξ and uncertainty π parameters. Estimation
of CUB models relies on likelihood methods and, specifically, on the implementa-
tion of the Expectation-Maximization algorithm. Fit improvements yielded by the
specification of covariates can be tested via a Likelihood Ratio Test if models are
nested: in general, the significance of an explanatory variable can be checked via
standard Wald test. In the following, let D be a dichotomous variable included in the
model specification to explain patterns of responses in terms of feeling and/or un-
certainty, so that θ0 = (π0,ξ0), θ1 = (π1,ξ1) are the parameters of the conditional
CUB distributions

(
Ri|Di = 0

)
∼ CUB (π0,ξ0) and

(
Ri|Di = 1

)
∼ CUB (π1,ξ1). If

D implies statistically significant differences in model parameters, then two sub-
groups of respondents are identified and one should establish if the resulting clus-
tering is actually relevant. This issue is particularly common when the sample size
n is large. Here we wish to discuss a system of hypothesis:

H0 : D should not be retained in the model (D is not important)

versus

H1 : D should be retained in the model (D is important).

Thus, significant differences in model parameters will be investigated in order to
disclose to which extent the clustering variable is actually relevant and should be
retained in the model.

2 A test for variable importance

In order to test if the inclusion of a significant factor leads to relevant improvement
of the fit, the (normalized) dissimilarity measure [6, 8]:

Diss(p,q) =
1
2

m

∑
r=1
|pr−qr| ∈ (0,1) (3)

stems quite naturally from the motivating discussion. If p,q are two probability
distributions, it assesses the proportion of cases in which the two distributions dif-
fer. Thus, if a CUB (1,1) is fitted to the data with a dichotomous factor D for both
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components:

logit(πi) = β0 +β1Di, logit(ξi) = γ0 + γ1Di,

and, accordingly, two clusters are identified, the dissimilarity between the estimated
conditional response probabilities of Ri|D = 0, Ri|D = 1 indicates how far apart the
groups D = 0 and D = 1 are in terms of the corresponding estimated CUB (0,0)
probability distributions. Similar considerations hold if the dichotomous variable D
is specified only for one of the components.

3 A simulation experiment

The validation of the proposed approach to test variable importance will be run
with a Monte Carlo experiment. For illustrative purposes, we shall consider the sim-
plest case of a dichotomous variable D, with levels 0,1 (for instance, males and
females, smokers and non smokers, etc.), able to discriminate feeling, by assuming
heterogeneity constant among subjects. Thus, in the end we shall have two sepa-
rate groups of respondents, corresponding to feeling parameters ξ0 and ξ1 if D = 0
or D = 1, respectively. We derive the empirical critical values cα under the null
H0 : ξ0 = 0.30, ξ1 = 0.35 by generating a sample of data in which a dummy covari-
ate is significant but the difference in parameter values is very small, thus it may
raise doubts about importance of the implied classification. To this aim, we sample
1000 times from the null distribution for varying π ∈ (0.2,0.4,0.6,0.8), different
numbers of categories and sample sizes for the two groups.

Empirical critical values for the dissimilarity statistics corresponding to nominal
level α = 0.05 are summarized in Table 1: lower and upper bounds (lb and ub,
resp.) of 80% bootstrap confidence intervals (1000 replicates) are also reported as
an instance of a measure of uncertainty of the test statistics. Thus, at level α , a
value of dissimilarity between the implied conditional distributions lower than the
corresponding critical value indicates that D has a weak importance for the purpose
of discrimination of response patterns and its specification in the model could be
matter of discussion.

As a by product of the simulation experiment, new evidence is found to support
the specification of uncertainty for ordinal data models: indeed, critical values de-
crease for higher values of heterogeneity (that is, larger weights for the Uniform
distribution), indicating that this component has a not-negligible effect in the analy-
sis of variable importance. In order to enhance the purpose of the test, an additional
simulation experiment has been planned: for each run and for the chosen parameter
values, a sample has been generated with a significant dummy variable splitting the
observations into two groups of sizes n0 and n1 respectively. Then the dissimilarity
test has been applied to check for variable importance according to the proposal.
Results are summarized in Table 2 and highlight that, especially for large samples,
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Table 1 Empirical critical values with increasing level of uncertainty parameter

m = 5 m = 7 m = 10
cα lb ub cα lb ub cα lb ub

n0 = 300, n1 = 400, ξ0 = 0.30, ξ1 = 0.35

π = 0.2 0.104 0.102 0.106 0.103 0.101 0.106 0.102 0.099 0.104
π = 0.4 0.117 0.115 0.119 0.112 0.109 0.114 0.116 0.112 0.119
π = 0.6 0.122 0.119 0.130 0.125 0.121 0.129 0.135 0.132 0.138
π = 0.8 0.137 0.132 0.142 0.135 0.131 0.139 0.147 0.142 0.150

n0 = 1300, n1 = 1400, ξ0 = 0.30, ξ1 = 0.35
π = 0.2 0.058 0.057 0.061 0.053 0.052 0.055 0.054 0.053 0.055
π = 0.4 0.064 0.063 0.065 0.065 0.063 0.067 0.072 0.070 0.073
π = 0.6 0.075 0.073 0.076 0.079 0.078 0.080 0.094 0.093 0.096
π = 0.8 0.090 0.088 0.093 0.099 0.098 0.101 0.119 0.118 0.121

n0 = 13000, n1 = 14000, ξ0 = 0.30, ξ1 = 0.35
π = 0.2 0.024 0.023 0.024 0.026 0.025 0.026 0.030 0.030 0.031
π = 0.4 0.042 0.041 0.042 0.046 0.046 0.047 0.056 0.055 0.056
π = 0.6 0.060 0.059 0.060 0.066 0.066 0.067 0.081 0.081 0.081
π = 0.8 0.077 0.076 0.077 0.086 0.086 0.086 0.106 0.105 0.106

the classical concept of statistical significance has to be accompanied by a more
specific analysis of variable importance.

Table 2 Importance rates for a significant dummy variable

π = 0.2 π = 0.4 π = 0.6 π = 0.8
Importance Yes No Yes No Yes No Yes No

n0 = 300, n1 = 400, ξ0 = 0.3, ξ1 = 0.35
m = 5 0.09 0.91 0.06 0.94 0.04 0.96 0.04 0.96
m = 7 0.08 0.92 0.07 0.93 0.05 0.95 0.05 0.95
m = 10 0.06 0.94 0.09 0.91 0.04 0.96 0.11 0.89

n0 = 1300, n1 = 1400, ξ0 = 0.3, ξ1 = 0.35
m = 5 0.03 0.97 0.05 0.95 0.06 0.94 0.11 0.89
m = 7 0.07 0.93 0.05 0.95 0.14 0.86 0.08 0.92
m = 10 0.08 0.92 0.13 0.87 0.12 0.88 0.12 0.88

n0 = 13000, n1 = 14000, ξ0 = 0.3, ξ1 = 0.35
m = 5 0.16 0.84 0.12 0.88 0.09 0.91 0.17 0.83
m = 7 0.14 0.86 0.12 0.88 0.10 0.90 0.13 0.87
m = 10 0.14 0.86 0.11 0.89 0.11 0.89 0.14 0.86

The proposed variable-importance test has shown perfect agreement with the
corresponding one using the (symmetrized) Kullback-Leibler divergence (here not
reported for the sake of brevity), but it is more advantageous since the dissimilarity
measure is a proper (normalized) distance and it is able to foster interpretation and
visualization of results. Similar conclusions are found when considering ξ0 = 0.1 or
ξ1 = 0.5 for the feeling under the null (it is not necessary to test for values ξ > 0.5
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since CUB distributions are reversible) and for increasing differences between ξ0 and
ξ1. Dually, the proposed test can be run in case the clustering covariate is tested to
explain heterogeneity for samples with homogeneous feeling or both components.

4 On-going developments

The proposed testing procedure for variable importance prescribes that, once a di-
chotomous factor is specified in the model to explain the response (in terms of feel-
ing and uncertainty in case one assumes the CUB paradigm), then the dissimilarity
between the estimated conditional distributions can reveal its discrimination ability
in an effective and insightful way. The topics here investigated are being subject to
more in-depth analysis stemming from real case-studies; further studies are tailored
to the application of the approach to other classes of models, as well as to the study
of properties of the dissimilarity estimator -also known as Duncan segregation in-
dex in other contexts- in the vein of [4, 10]. Notice that the same approach can be
exploited to design a proper test of significance for difference in parameter values:

H0 : θ0 = θ1 versus H1 : θ0 6= θ1

with test statistics based on the dissimilarity between the conditional distributions.
From some preliminary investigations in this perspective one obtains a test that is as
powerful as the corresponding one using the Kullback-Leibler divergence to assess
distances between distributions. This approach has been investigated in [7, 9] to
design a homogeneity test in case of continuous populations and small sample sizes.
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